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What is a GMM?

Intuitively: find an optimal way to place Gaussian functions
at various points in the image such that the sum of these
Gaussians mimics the input gridded field.

Original 5 Gaussians
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Number of Gaussians

The accuracy of fit gets better as you increase number of
Gaussians.

Original 10 Gaussians
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Diminishing Returns

20 Gaussians 50 Gaussians

At some point, the benefits of a parametric model are lost
and you might as well just use the pixel values.
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Forecast Verification with GMM

The GMM captures the ”key” features in an image (subject
to Gaussian approximations). Compare the Gaussians’
parameters to gain insight into how two images differ:

Parameter Meaning Implication
µx ,µy Center point Translation error
σ2

x ,σ2
y ,σxy Variance, covariance Rotation, aspect

ratio, size
πk Amplitude of Gaussian Intensity error
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Example Verification: Geometric

Geometric dataset from [Gilleland et al., 2009]. Chose 3
Gaussians to demonstrate that exact number is not critical.

geom000 geom003
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Example Verification: Geometric

µx µy σ2
x σxy σ2

y πk
0 Original 249 203 1720 4 128 49734

249 203 1667 4 127 49734
250 203 1668 9 127 49737

1 50 pts. 249 253 1694 0 129 49731
right 250 254 1682 4 121 49741

250 253 1679 4 131 49732
2 200 pts. 249 404 1612 4 126 49739

right 250 403 1682 4 127 49735
250 403 1760 0 129 49731

3 125 pts. 250 339 1696 9 2110 167034
right 249 340 1696 13 2048 167018
too big 250 341 1647 4 2021 167032
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Example Verification: Geometric

µx µy σ2
x σxy σ2

y πk
4 125 pts. 249 341 104 1 2046 49736

right 249 340 101 1 2027 49729
turned 250 339 105 2 2120 49740

5 125 pts 249 355 1678 17 8271 323126
right 250 356 1688 34 8203 323125
huge 250 356 1668 16 8265 323121



Verification
using GMM

Lakshmanan
et. al

The Basic
Idea

Other
Verification
Methods

Fitting a GMM

Results

Exploration

Yes, but ...

Three questions:
1 How does this compare to Method X ...?
2 How do you fit a Gaussian Mixture Model to data?
3 How well does it do on real (not synthetic) data?
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Advantages of GMM approach

1 Splits, merges happen automatically if needed for
optimal fit.

2 The Gaussian is a parametric function: a highly
compressed view of the information in the data

3 Number of Gaussians used a good measure of the
scale at which the image is being represented.

4 Transformations of Gaussians correspond to easily
identifiable changes in their parameters.
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How the concept compares to ...

Technique Similarity Difference
Filtering Naturally incor-

porates scale
Compare model
parameters not
pixel values

Object Compare ”fea-
tures”

No thresholds,
split/merge
problems, etc.
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How the concept compares to ...

Wavelets Wavelets provide multires-
olution i.e. images at differ-
ent scales; GMM provides
objects at different scales

Field deformation Optical flow approaches
are non-parametric; you
get an answer at each grid
point.
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Why consider a GMM approach?

Multi-scale like filtering-based methods
Transformation-detecting like object-based methods
Simple to implement
Mathematically elegant
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How to fit a GMM

1 Initialize the GMM.
2 Carry out Expectation-Minimization (EM) algorithm to

iteratively ”tune” the GMM.
3 Store the parameters of each Gaussian component of

the GMM.
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The GMM

The GMM is defined as a weighted sum of K
two-dimensional Gaussians:

G(x , y) =
K∑

k=1

πk fk (x , y) (1)

f (x , y) =
1

2π
√
|Σxy |

e−((x−µx )(y−µy ))Σ−1
xy ((x−µx )(y−µy ))T /2 (2)

Σxy is: (
σ2

x σxy
σxy σ2

y

)
(3)



Verification
using GMM

Lakshmanan
et. al

The Basic
Idea

Other
Verification
Methods

Fitting a GMM

Results

Exploration

The Expecation-Minimization (EM) method

Given a set of points xi , yi , it is possible to fit these points to
a GMM, G(x , y), by following an iterative method known as
the expectation-minimization (EM) method.
Assume that an initial choice of parameters µxk , µyk ,Σxyk

exists for each of the K components.

P(xi , yi |θ) =
K∑

k=1

πk fk (xi , yi |µxk , µyk ,Σxyk ) (4)
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E-M method

E-step:

P(k |xi , yi , θ) =
πk fk (xi , yi |µxk , µyk ,Σxyk

)

P(xi , yi |θ)
(5)

M-step:

µx = E(x) =

∑N
i=1(Pk (xi , yi)xi)∑N

i=1 Pk (xi , yi)
(6)

(
E((x − µx)2) E((x − µx)(y − µy ))

E((x − µx)(y − µy )) E((y − µy )2)

)
(7)

πk =
1
N

N∑
i=1

Pk (xi , yi) (8)
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The EM method is problematic

The EM process has to be bootstrapped with some initial
guess at a GMM.
The EM process will start at that point and slowly climb
towards the local maximum in likelihood space.
Only promises a local maximum
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Initializing the GMM

A significant amount of spatial coherence in weather images
that we can take advantage of to place the initial mixture
components:

1 Group pixels into contiguous regions
2 Randomize the pixels within a region (to remove

order-dependence)
3 Arrange regions in order (maybe in order of top-left

point, or of centroid, or K-means cluster centroids)
4 Break pixel list into K equal parts
5 If a pixel falls into the k th group, the initial weight is one

for the k th component and zero for all other
components.
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Intensity?

Recall that the GMM was defined so as to sum to 1, and that
the EM method optimized the likelihood of the parameters
given the positions of the pixels (and not the intensity).
Two minor changes:

1 The total intensity associated with all the pixels in the
image is used to scale the GMM

2 More intensive locations are repeated several (m)
times:

m = 1 + round(
CDF (Ixy )

freq(Imode)
)∀Ixy < Imode (9)
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Number of components?

Traditional way to estimate number of components:

BIC = 2l(θ) − 6Klog(N) (10)

l(θ) =
N∑

i=1

log(P(xi , yi)) (11)

Doesn’t work: hundreds of components.
We just used 3.
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Perturbed dataset

2km WRF from CAPS perturbed
(See [Gilleland et al., 2009]).

fake000 fake003 fake007
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GMM parameters for perturbed cases

µx µy σ2
x σxy σ2

y πk
Original 176 289 1305 743 1328 26437

309 252 1272 482 665 26437
379 407 1456 3919 20490 26437

3 pts. right 181 292 1306 743 1328 26437
5 pts. down 314 255 1270 490 675 26437

384 410 1456 3918 20424 26437
6 pts. right 186 295 1307 744 1329 26437
10 pts. down 319 258 1269 496 675 26437

389 414 1472 3928 20348 26437
12 pts. right 195 299 1206 840 1133 27101
20 pts. down 340 261 774 578 767 34201

416 495 1051 1900 10252 17843
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GMM parameters for perturbed cases

Description µx µy σ2
x σxy σ2

y πk
24 pts. right 212 311 1059 813 1111 26527
40 pts. down 354 276 1239 802 837 33773

432 483 1347 3110 13743 17566
48 pts. right 250 335 968 801 1121 25113
80 pts. down 387 304 1772 1052 934 33256

452 447 1405 4659 20003 15666
12 pts. right 192 298 1096 859 1198 33338
20 pts. down 335 263 1178 773 829 42294
times 1.5 412 483 1264 2538 12634 22304
12pts. right 222 306 2355 194 459 17815
20 pts. down 345 258 79 162 486 20620
minus 2 mm 409 431 755 2884 20770 15932
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June 1, 2005

Three quite different systems: Plains, NW, SE 3-member
GMM fit does not capture these three events. Instead, NW
ignored.
As pointed out by [Wernli et al., 2009], it would be
advantageous to carry out this analysis on smaller domains
where only one type of of meteorological system
predominates.
Higher order GMM fits do capture all these systems. We
chose to use only a 3rd order fit so as to keep the analysis
of member parameters tractable.
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The GMM

Observed 2CAPS 4NCAR 4NCEP
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GMM Parameters

µx µy σ2
x σxy σ2

y πk
Obs. 193 301 3546 841 936 22136

350 264 684 1218 7508 22616
383 309 921 2032 22181 20061

2CAPS 176 289 1305 743 1328 26437
309 252 1272 482 665 26437
379 407 1456 3919 20490 26437

4NCAR 159 260 3134 2344 7636 16464
277 264 3369 1607 932 39139
379 461 1729 2840 14879 21068

4NCEP 168 247 3518 747 6888 23002
278 258 3153 906 484 43675
405 416 3920 6740 24879 20010
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First Gaussian Component

1st Gaussian component corresponds to the Northern
Great Plains.

µx µy σ2
x σxy σ2

y πk
Observed 193 301 3546 841 936 22136
2CAPS 176 289 1305 743 1328 26437
4NCAR 159 260 3134 2344 7636 16464
4NCEP 168 247 3518 747 6888 23002

All 3 forecasts displaced to the north and west; 2CAPS is
the least displaced.
4NCAR underestimates the precip; 2CAPS overestimates;
4NCEP gets it correct.
2CAPS gets shape wrong; 4NCAR, 4NCEP get north-south
extent correct but overestimate east-west extent.



Verification
using GMM

Lakshmanan
et. al

The Basic
Idea

Other
Verification
Methods

Fitting a GMM

Results

Exploration

Second Gaussian Component

Corresponds to Southern Great Plains into Texas.

µx µy σ2
x σxy σ2

y πk
Obs 350 264 684 1218 7508 22616
2CAPS 309 252 1272 482 665 26437
4NCAR 277 264 3369 1607 932 39139
4NCEP 278 258 3153 906 484 43675

All forecasts displaced to north; with 2CAPS again the best.
Shape: 4NCEP, 4NCAR overly vertical; 2CAPS also wrong
orientation, but better.
Intensity: 2CAPS is closest; 4NCAR, 4NCEP significant
overestimates
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Third Gaussian Component

Corresponds to Southeastern US

µx µy σ2
x σxy σ2

y πk
Obs 383 309 921 2032 22181 20061
2CAPS 379 407 1456 3919 20490 26437
4NCAR 379 461 1729 2840 14879 21068
4NCEP 405 416 3920 6740 24879 20010

All get intensity and orientation correct but displaced to the
east; 4NCEP also displaced to north.
4NCEP too large in north-south direction: precipitation even
in correct in aggregate is spread over too large an area.



Verification
using GMM

Lakshmanan
et. al

The Basic
Idea

Other
Verification
Methods

Fitting a GMM

Results

Exploration

Areas for further exploration

We presented a GMM approach to model verification, not a
full-fledged verification technique. Ideally, a verification
technique is fully automated and objective.

1 Number of components An information criterion more
amenable to the forecast verification problem needs to
be developed.

2 Scale The correspondence of the number of
components to the scale at which model verification is
carried is very inexact.

3 Automated analysis In order to use more than 3
components, rules to identify and analyze GMM
parameter changes automatically have to be
developed.
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Areas for further exploration

1 Association or Deformation? Matching Gaussian
components across images may become hard with
more than 3 components. An alternative approach:
start the E-M on the forecast field with the GMM that
corresponds to the observed field and observe how the
GMM components get deformed.

2 Initialization of EM Exploration into other algorithms for
initializing the EM process may prove beneficial.

3 Low intensity regions should not be ignored. Perhaps
break up large spatial areas into smaller areas and
then fit GMMs to them . . .
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