Intercomparison of spatial forecast verification methods: A review and new project launch

> Project committee: Marion Mittermaier, Met Office, UK Eric Gilleland and Barb Brown, NCAR, USA Manfred Dorninger, University of Vienna, Austria Beth Ebert, Bureau of Meteorology, Australia Laurie Wilson, Environment Canada

Outline

- A brief history → "ICP1"
- Aims of the new project \rightarrow "ICP2"
- Data sets
- Experimental outline
- Invitation and timelines

ICP

- 2008-2010
- Focus on precipitation
- Methods applied by researchers to same datasets (real forecasts; perturbed cases; idealized cases)
- Subjective forecast evaluations
- Weather and Forecasting special collection 2009-2010
- Code available online

Categorisation of methods

Category	Scales with skill	Location errors	Intensity errors	Structure errors	Occurrence (hits, misses, false alarms)
Traditional (gridpoint)	×	×	\checkmark	×	\checkmark
Neighbourhood	\checkmark	×	\checkmark	×	\checkmark
Scale separation	\checkmark	×	\checkmark	×	\checkmark
Features based	×	\checkmark	\checkmark	\checkmark	\checkmark
Deformation	×	\checkmark	\checkmark	×	×

Gilleland et al., Bulletin of the American Meteorological Society, 2010

Different methods have different aims

Scale separation and neighbourhood methods

- Focus on accuracy quantification
- What is the forecast accuracy at small scales? Large scales? Low / high intensities?
- What spatial scales and intensities have reasonable accuracy?
- Different methods emphasize different aspects of accuracy

Feature-based methods

- Focus on describing the error
- What is the error in this forecast?
- What is the cause of this error (wrong location, wrong size, wrong intensity, etc.)?

Field deformation methods (morphing)

- Focus on describing phase errors
- Does the shape/placement of the forecast resemble the observations?

Usage

Scale separation and neighbourhood methods

- Whenever high density observations are available over a reasonable domain
- When knowing scale- and intensity-dependent skill is important
- When comparing forecasts at different resolutions

Feature-based methods

- When features are well defined (organized systems, longer rain accumulations)
- When it is important to measure how well the forecast predicts the properties of systems
- When size of domain >> size of systems

Field deformation (morphing)

- When forecasts have a fair resemblance to the observations
- Absence of a feature in the observations or forecast leads to peculiar behaviour of distortion vectors
- When knowing phase errors of the field is important

Aims of ICP2

How do/can spatial methods:

- Transfer to other regions with complex terrain, and other parameters: wind (speed and direction) and rain?
- Work with *ensembles*?
- Incorporate observations uncertainty?

Models

- From MAP D-PHASE COPS archive
 - Deterministic 2 km COSMO-2 Init-time:
 - Initialised 06 UTC FC-range: 24h
 - Ensemble 10 km CMC-GEM-H Init-time:
 - Initialised 06 UTC FC-range: 18h
- Invitation for modelling centres to produce re-runs of cases with more up-to-date model configurations (Tier 3), but core experiments to be done using COSMO-2 and CMC-GEM-H.

Observations data set

JDC-data: D-PHASE (FDP, Rotach, et al., 2009, BAMS) and WWRP COPS (RDP, Wulfmeyer, et al., 2008, BAMS), data available: (http://cera-www.dkrz.de/WDCC/ui/Index.jsp)

Experimental design

Outcomes

- Participants must complete the core experiment for at least case 1 to formally be classed participants.
- This requires the provision of hourly verification statistics (following the forecast evolution) for
 - Hourly precipitation (and 6h precipitation)
 - Hourly wind speed and direction
- Participation in subsequent tiers 1-3 is at the discretion of participants, but output should follow the same rules as above.
- We extend an invitation to modelling centres to produce re-runs of cases with more up-to-date model configurations under Tier 3, but core experiments must be done using COSMO-2 and CMC-GEM-H.

VERA 2007.07.20 15 UTC, wind, ff-Mean = 4.2, ff-Std = 2.6 [m/s]

*

VERA 2007.07.18 18 UTC, RR [mm/1h], Mean = 0.0, Std = 0.3 [mm/1h]

27-

No.

Invitation and timeline

- <u>Now</u>: Recruiting participants
- <u>Jan-Feb</u>: Data sets available from NCAR ftp; collecting datasets; work commences
- <u>Mar 2014</u>: Initial results session at

6th international verification methods workshop

17-19 March 2014

New Delhi

To express interest:

Send email to Eric Gilleland (ericg@ucar.edu)

http://www.ral.ucar.edu/projects/icp/index.html