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Abstract

The Mesoscale Verification Inter-Comparison over Complex Terrain
(MesoVICT) with a set of six cases tries to explore new verification
methods for more realistic meteorological scenarios. In this thesis the
first core was chosen for the 20 - 22 June 2007 in and around the
Alps region to investigate the comparability, quality and consistency
of new spatial verification methods such as fractions skill score (FSS),
structure amplitude length (SAL) and displacement and amplitude
score (DAS) with a focus on the location components. The meth-
ods were applied to the VERA analysis and compared to COSMO-2
and GEM-LAM, all with a resolution of 8 km. The verified parame-
ters are precipitation (1h accumulated) and wind strength. High bias
percentiles are used instead of fixed thresholds. They also allow for
an investigation of the spatial distribution of phenomena. It will be
shown that to a high degree all methods in use lead to similar location
errors.
All methods in use assess the 20 June as the day with the highest
values in location errors, caused by low synoptic forcing, in contrast
to 21 June with high synoptic forcing. Additionally there exists a
correlation between location components for precipitation on 21 June.
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1 Introduction

The continously increasing resolution of operational numerical weather predic-
tion models (NWP), mainly due to greater computing power, leads to improved
predictions of local weather, e.g. distribution of precipitation with more realis-
tic spatial structure. Yet, mesoscale phenomena like squall lines are routinely
forecasted. At small spatial scales forecast errors grow more rapidly (Lorenz
1969) and so the predictability has a natural limit.
For meteorological features with small errors in displacement or in the timing,
traditional categorical verification scores such as Gilbert skill score (GSS; or
equitable threat score) and threat score (critical success index, CSI) result in
false alarms and missed events which get worse for smaller grid spacing (Wilks
2011). The feature can be penalized twice, if the feature is displaced slightly in
space (and/or time), once for missing the observations and again for giving a
false alarm (Gilleland 2009).
But what is a good forecast? As an essential part of NWP, verification of numer-
ical forecasts has to describe general characteristics of a good forecast. Mur-
phy (1993) defined three types of goodness in terms of consistency, quality (or
goodness) and value.
To get a more informative forecast evaluation, new spatial verification methods
were developed. The Spatial Forecast Verification Methods Intercomparison
Project (ICP), established in 2007 aimed at comparing, developing and getting
a better understanding of these new methods and tried to answer some ques-
tions such as how each method informs about forecast performance overall and
whether the methods inform about location errors. The first phase focused on
quantitative precipitation forecasts across the central United States.
The second phase, the Mesoscale Verification Inter-Comparison over Complex
Terrain (MesoVICT) tries to explore new methods for more realistic meteoro-
logical scenarios, with more variables in addition to precipitation and were
applied to Europe including ensembles of forecasts and observations as well.
A set of six cases was selected to cover a wide range of interesting meteorolog-
ical phenomena that developed over time.
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In this thesis the first core was chosen for the 20 - 22 June 2007 in and around
the Alps region.
The aim of this paper is to investigate three different spatial verification meth-
ods on the selected area for deterministic forecasts of precipitation (1h accu-
mulation) and wind strength. Furthermore their comparability to each other
was examined as well as how they yield identical information such as location
errors but from different perspectives.

The high spatiotemporal variability of precipitation and wind strength poses
challenges for accurate predictions. However a good forecast of these two
meteorological phenomena is very important, particularly because of extreme
events and their far-reaching consequences such as floods and wind storms,
big economic damage and social effects.
A second objective is to compare the results for two NWP-models (COSMO-2
& GEM-LAM). The used observation field is provided by VERA (Vienna En-
hanced Resolution Analysis) having the advantage that it provides a regular
grid in mountainous terrain by interpolation of sparsely and irregularly dis-
tributed observations, explicitly for precipitation and wind in order to get the
observation field and the forecast field on the same grid.

For this endeavour a set of three verification methods was chosen: Fractions
Skill Score (FSS) (Roberts and Lean 2008), Structure Amplitude and Location
(SAL) (Wernli et al. 2008) and Displacement and Amplitude Score (DAS) (Keil
and Craig 2007&2009) which are described in Chapter 3. Afterwards the results
will be shown in Chapter 4 with the verification of precipitation and of wind.
A discussion and conclusions are to follow.
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2 Data and models

The data collection for MesoVict contains observations, VERA analyses and de-
terministic and ensemble model forecasts of the World Weather Research Pro-
gramme (WWRP) Forecast Demonstration Projects (FDP): Mesoscale Alpine
Programme (MAP) D-Phase (Rotach et al., 2009) and Convective and Orographically-
Induced Precipitation Study (COPS) (Wulfmeyer et al., 2008).

2.1 Observation data

The so-called JDC data set (Dorninger et al., 2009; Gorgas et al., 2009) consists
of reports from more than 12,000 stations all over Central Europe with a mean
station distance of approximately 16 km (Figure 1), which have been provided
by the GTS as well as other networks during the whole year 2007. It has been
established as a unified data set of surface observations in a joint activity of
MAP D-Phase and COPS. The data set is used to compute the VERA analysis.

Figure 1: Station locations as used in the JDC data set. Blue: GTS stations; red:
non-GTS stations. Frames indicate COPS regions (smaller frame) and
D-PHASE region (larger frame), respectively from (Dorninger et al.,
2013).
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2.2 VERA

The Vienna Enhanced Resolution Analysis (VERA) scheme (Steinacker et al.,
2000) contains an analysis algorithm which is based on a thin-plate spline ap-
proach and focuses on the interpolation of sparsely and irregularly distributed
observations to a constant grid in mountainous terrain (complex topography);
in our case, the resolution is 8 km and covers the larger D-PHASE domain
(Dorninger et al., 2013)
The big advantage is that no first guess field of a NWP-model is needed as
background information, so the interpolation between the grid points is inde-
pendent of the model. A quality control scheme, named VERA-QC (Steinacker
et al., 2011), is used to pre-process the observation input data (of the GTS
stations). The VERA-QC avoid artificial and unintentional patterns.
The output parameters include but are not limited to mean sea level pressure,
surface potential and equivalent potential temperature (2m), near surface wind
(10 m) and accumulated precipitation. The quality of the analysis is good as
long as there is an adequate coverage of observation stations (Dorninger et al.,
2008). This is ensured by GTS stations.

2.3 NWP-models

For MESOVict, datasets of two NWP-models were interpolated on the VERA-
grid with a horizontal resolution of 8 km to apply verification methods. The
output parameters are the same as for VERA.

COSMO-2

COSMO-2 is the high-resolution version of the non-hydrostatic meso-scale nu-
merical model with full physical parametrisations weather forecasting model
of the COSMO (Consortium for Small-scale Modeling) community (Steppler et
al. 2003) and the operational MeteoSwiss forecasting tool. It covers the Alps re-
gion with a horizontal resolution of 2.2 km and 60 vertical levels. COSMO-2 is
nested in the regional COSMO-7 model with 6.6 km mesh size, covering Cen-
tral Europe, which obtains the boundary and initial conditions of the global
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IFS model from ECMWF (Rossa et al., 2009; Baldauf et al., 2011). A data as-
similation system based on a nudging technique (Schraff, 1997) is used for
conventional observations. COSMO-2 has a forecast range of 24 h, starts at 00
UTC (Weusthoff et al., 2010).

GEM-LAM

The local Canadian high resolution Limited-Area Model (LAM) is nested in
the non hydrostatic version of the Global Environmental Multiscale (GEM)
with a horizontal resolution of 2.5 km (Rombough et al., 2010) and 58 vertical
levels (Erfani, 2005). The forecast was computed and provided over Europe.
GEM-LAM has a forecast range of 24 hrs as well, but starts at 06 UTC.
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3 Methods

The traditional grid-point-by-grid-point verification methods do not provide
essential information about forecast performance. The skill scores used in this
paper are calculated by using percentiles instead of fixed thresholds as the
aim was to investigate the spatial distribution of phenomena. Smaller per-
centile thresholds are sensitive for larger-scale, flat features and higher per-
centile thresholds indicate small and peaked features (Roberts 2008). In recent
years, a great variety of spatial verification methods has been developed.
To avoid that spatial errors are penalized twice (double penalty problem) for
being a near miss, and again for being a false positive, it is necessary to choose
a suitable verification method that also considers multiple scales. (Dey et al.
2014) For this purpose, three approaches are applied in this work.

3.1 Fractions Skill Score (FSS)

In ROBERTS and LEAN (2008) the FSS is described. First, compare two fields
of fraction by the Mean squared error (MSE) (from a model and observations,
denoted O and M). To calculate this, a threshold is selected as a fixed value
(e.g. 1mmh−1) or as a percentile (e.g. the top 5 % of the precipitation field).
This means, that the fields are converted to binary form with grid points set
to 0 for values below the threshold and 1 for values above. Then the spatial
window is selected and, for each neighborhood centred in a grid point, the
fraction of grid points with the value ’1’ within this square is computed.

MSE(n) =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

[O(n)i,j −M(n)i,j]
2. (1)

The FSS is defined in terms of the ratio of MSEn and MSE(n)re f :

FSS(n) = 1−
MSE(n)

MSE(n)re f
, (2)

where MSE(n)re f is the maximal MSE-value that can be obtained from the fore-
cast and observed fractions.

6



MSE(n)re f =
1

NxNy

Nx

∑
i=1

Ny

∑
j=1

[O(n)i,j
2 + M(n)i,j

2]. (3)

The FSS varies between 0 (complete mismatch between observation- and fore-
cast field) and 1 (perfect forecast). If there are no events forecast and some
occur, or some occur and none are forecast the score is always 0. The believ-
able skill is given by

FSSbelievable ≥ 0.5 +
f0

2
, (4)

where f0 is the domain average observed fraction (e.g. for the 99th percentile:
f0 = 0.01). If f0 is small, FSS can be approximated as FSSbelievable ≥ 0.5. For
higher f0 the approximation is not valid. The score is most sensitive to rare
events (e.g. convective events).
As an example, Figure 2 illustrates how the algorithm works:

Figure 2: A schematic comparison between forecast and observation.

The grid squares which set to ’1’ are shaded (threshold has been exceeded) and
those which are set to ’0’ are coloured white (threshold has not been reached).
For the central-grid square the forecast fraction is 1/1 = 1 and the observation
fraction is 0/1 = 0. For the 3 x 3 square the forecast fraction and observation
fraction is 4/9 = 0.44 and for the 5 x 5 square the fractions are equal too and
have a value of 9/25 = 0.36, so the FSS = 1 and forecast is correct for the larger
domains.
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3.2 Structure Amplitude Length Score (SAL)

WERNLI et al. (2008) formulated the object-oriented verification method SAL
based on three components of forecast errors: Structure errors ’S’, amplitude
errors ’A’ and location errors ’L’.
In WERNLI et al. (2008) a threshold depending on the amount of precipita-
tion, like R∗ = Rmax/15 is used. The comparison of the weighted sums of
forecast precipitation and observation precipitation objects yields the structure
component (Eq. 5), with Rn as the precipitation sums of the objects weighted
by the object maxima, Vn = Rn/Rmax

n . The values of the S-component lie in the
interval [−2, 2].

S =
V(R f )−V(Ra)

0.5[V(R f ) + V(Ra)]
(5)

V(R) = ∑M
n=1 RnVn

∑M
n=1 Rn

(6)

The amplitude component (Eq. 7) of SAL resembles a normalised bias with R f

and Ra as the mean forecast and observed precipitation amounts. It provides
a measure of the quantitative accuracy of the total amount of precipitation for
the whole domain. A ranges in [−2, 2].

A =
R f − Ra

0.5[R f + Ra]
(7)

Finally, the location component (Eq. 8) consists of two components. The first
one (Eq. 9) is the normalized distance between the centres of mass of the
modelled and observed precipitation field with x(R) as the overall mass centres
and dmax as the maximal distance in the fields. The second part (Eq. 10)
describes the resemblance of distribution of the objects within the fields. The
mass weighted distance between the overall mass centres and the individual
objects is given by L. L takes values in the interval [0, 2].

L = L1 + L2 (8)
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L1 =
|x(R f )− x(Ra)|

dmax
(9)

L2 = 2
|r(R f )− r(Ra)|

dmax
(10)

r = ∑M
n=1 Rn|x− xn|

∑M
n=1 Rn

(11)

In terms of all components, 0 denotes perfect forecast. If S > 0, the structure
of the field is too large and/or too flat in contrast to S < 0, which implies that
the precipitation field is to too small and/or too peaked. A negative (positive)
value of A implies an underestimation (overestimation).
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3.3 Displacement and Amplitude Score (DAS)

The DAS method is an optical flow-based technique intended to answer the
question how good a forecast is in terms of amplitude and location is described
in KEIL and CRAIG (2007 & 2009) and summarized here for ease of reading.
By using an optical flow technique, a vector field will be computed that de-
forms, or ’morphs’, one image into a replica of another and all features will
be displaced simultaneously in the image. It is based on a pyramidal match-
ing algorithm and is described in detail by Zinner et al (2008) and Keil and
Craig (2007). Therefore different grain sizes can be defined as 2F, with the
subsampling factor F.
To calculate DAS, two fields are constructed: A displacement error field DISobs(x, y)
in the obeservation space to show the magnitude of the displacement vec-
tor, and an amplitude error field AMPobs(x, y) by using the root-mean-square
(RMS) difference between the observation field and the morphed forecast field.
Wherever the observation field is zero, both fields are set to zero, so errors are
only defined where an observed feature is present.
Whenever DISobs(x, y) = 0 either no feature was forecast within the maximum
search distance Dmax or it is a perfect location forecast. A feature being missed
implies that the amplitude error will be large. A non-zero value means that
there was a forecast feature within the maximum search distance Dmax.
In forecast space DIS f ct(x, y) and AMPf ct(x, y) are computed similarly, but
now a large amplitude error for a feature and zero value for the displacement
error indicate a false alarm.

The algorithm to calculate DAS can be described as follows: First, the aver-
age of RMS of the amplitude errors over the verification area A gives a scalar
amplitude score in observation space and is defined as

AMPobs =
1

nobs

[
∑
A

AMPobs(x, y)2

] 1
2

. (12)

The mean displacement error in the observation space is computed as
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DISobs =
1

nobs
∑
A

DISobs(x, y). (13)

AMP f ct and DIS f ct are defined analogously. nobs and n f ct are the numbers
of non-zero points in the observation- and forecast field, respectively. The
weighted averages define the amplitude error (AMP)

AMP =
1

(nobs + n f ct)
(nobs AMPobs + n f ct AMP f ct) (14)

and displacement error (DIS):

DIS =
1

(nobs + n f ct)
(nobsDISobs + n f ctDIS f ct). (15)

Finally, the displacement-amplitude score, DAS, is defined as the average of
the two normalized components. DIS will be weighted by the maximum
search distance Dmax and AMP will be normalized by a characteristic intensity
I0 whose value depends on the application. Keil and Craig (2008) suggest the
RMS amplitude of the observed field or for large datasets, I0 could be specified
by a climatological rain rate.

DAS =
DIS
Dmax

+
AMP

I0
. (16)

The DAS values are in range [0,+∞], but it is normally of order one.
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4 Verification of precipitation and wind

First, we consider the synoptic situation and in addition, the rationale for using
percentiles. Afterwards the results will be analysed and important outcomes
will be shown for the used verification methods by using the VERA analysis
and the NWP model COSMO-2. GEM-LAM results will be discussed in the
next chapter to focus on COSMO-2 in this chapter only. The latter’s run starts
at 00 UTC in contrast to GEM-LAM which starts at 6 UTC. So the consideration
of the entire day leaves more time for verification.
On 20 June a trough was located over the British Isles and ahead of that, warm
moist air was advected towards the Alpine region (Figure 3 (a)). As a result,
strong convective events began in the evening of 20 June 2007, in the region
north of the Alps. To illustrate this, Figure 4 (a - d) show the xy-plots on
this particular day at 19 UTC for precipitation and an accumulation period
of 1h Fig. 4 (a, b). The wind field, represented by the strength and direction
(represented by vectors), is shown in Fig. 4 (c, d). The precipitation field caused
by convection seems spotty and heterogeneous for the model forecast and the
analysis in contrast to the wind field, which seems relatively homogeneous.
On 21 June, a cold front moved rather quickly eastwards and reached the Alps
from the west at circa 5 UTC (Figure 3 (b) & (c)) and again, convective events
are observed ahead of the front and strong westerly winds occurred. The cold
air mass is too shallow and cannot spill over the mountains.
Figure 5 (a - d) show the frontal structure for the 21 June at 16 UTC. Now, the
rain area is more widespread for both, the model and the analysis, and the
structure of the front is stretched from south-west to north-east. The wind-
vectors rotate through 90◦ behind the front what is well computed ("Eyeball"
verification). In the area of the front, the wind strength is lower in comparison
to the near surrounding area. It is remarkable that the 10 m wind magnitude
is relatively low in the Alps region all over the time, what could depend on
an error in the analysis and in the model forecast, caused by the orographic
influence on the model forecast and VERA analysis.
The last day, 22 June, shows a situation like on 20 June with convective events
by sun heating, because the cold front left the domain.
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(a) (b)

(c)

Figure 3: Met Office surface analysis valid at 00 UTC on 20 (a), 21 (b) and 22
(c) June 2007.
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(a) (b)

(c) (d)

Figure 4: (a)&(b) Precipitation field in [mm/h] and (c)&(d) wind field includ-
ing magnitude in [m/s] and direction for VERA analysis (a)&(c) and
COSMO-2 (b)&(d) on 20 June at 19 UTC.
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(a) (b)

(c) (d)

Figure 5: (a)&(b) Precipitation field in [mm/h] and (c)&(d) wind field includ-
ing magnitude in [m/s] and direction for VERA analysis (a)&(c) and
COSMO-2 (b)&(d) on 21 June at 16 UTC.
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4.1 Precipitation and wind percentiles

The VERA analysis (blue) and the NWP models COSMO-2 (red) and GEM-
LAM (green) are shown in the time series for the 1h accumulation average of
precipitation (Figure 6). This plot shows a relatively high bias, especially for
the 21 June, but also for the 20 June. Therefore it is advisable to use percentiles.

(a) (b) (c)

Figure 6: Time series of mean precipitation [mm] per grid-point from 20 - 22
June 2007 (a) - (c).

On 22 June, the bias is nearly negligible (for a particular time), but it is remark-
able that between two time steps a bias exists. So for VERA, the peak of the pre-
cipitation amount is at 17 UTC and for COSMO-2 and GEM-LAM at 16 UTC.
The usage of percentiles instead of fixed thresholds overcomes model bias and
allows the spatial distribution of phenomena to be investigated. Again, this
supports the importance of using percentiles instead of fixed thresholds. On
all three days it is noticeable that the precipitation time series is smoother for
the models than for the VERA analysis. The bias in the models compared to
VERA analysis and the variation over time are an important consideration for
model evaluation.
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Through this thesis, the 95th and 99th percentile thresholds are used which are
associated with smaller, more extreme forecast features.

(a) (b)

Figure 7: Precipitation [mm] of VERA, COSMO-2 and GEM-LAM for the 95th
(a) and 99th percentile threshold (b) on 21 June 2007.

In Figure 7, VERA (red), COSMO-2 (blue) and GEM-LAM (green), differ by
up to 2mm (4mm) in accumulation values for the 95th (99th respectively) per-
centile threshold on the front passing day (21 June). However the percentiles’
thresholds follow the same overall trend by decreasing throughout the day.
This suggests the assumption that the NWP models produce elongated pre-
cipitation features. The first peak of COSMO-2 for the 95th percentile at 5
UTC is because of strong predicted convective events ahead of the front. The
xy-plot in Figure 8 visualises the precipitation field (a, b) and the correspond-
ing 95th percentile thresholded field (c,d) at 5 UTC (front reach the Alps). It
shows clearly that the threshold considers only areas of convective precipita-
tion when the precipitation is strongest leading to a corresponding value with
a very high peak for COSMO-2 in comparison to VERA. Have a further look at
the 95th percentile thresholded fields ((c)&(d)), VERA compute a precipitation
area over south Switzerland, whereas COSMO-2 does not. The structure of the
latter field is at one stretch in contrast to the VERA analysis which has three
separate rain areas.
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(a) (b)

(c) (d)

Figure 8: (a)&(b) Precipitation field in [mm/h] and (c)&(d) the 95th percentile
threshold of VERA analysis (left) and COSMO-2 (right) on 21 June at
05 UTC.
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The overall wind field is also well computed by the NWP for the 95th percentile
threshold of wind strength as can be seen in Figure 9, which shows the analysis
and model values of wind strength against time. The time series has a peak
at 15 UTC with lower values before and afterwards and jibes with the peak
of the 95th percentile of precipitation. The increase until 15 UTC is because
of strong pre-frontal wind strength, after 5 UTC, when the front is inside the
domain, and additionally an increase in wind strength behind the front. The
front is leaving the domain after reaching the peak and that leads to a decrease
of the time series. So there is indeed a correspondence, caused by the cold
front, between the time series of the 95th percentile thresholded precipitation
and wind values.

Figure 9: Wind strength [m/s] of VERA, COSMO-2 and GEM-LAM for 95th
percentile threshold on 21 June 2007.
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4.2 Spatial verification

Now we consider the results of the different scores for the front passing day (21
June), because on this day, convective events occurred ahead of the front which
transformed during the day from a scattered and heterogeneous rain area to a
stretched and elongated structure (compare Figure 8 (a), (b) and Figure 5 (a),
(b)). The comparison of the verification methods and discussion for all three
days and the two NWP models follow in the next chapter.

4.2.1 Fractions Skill Score - FSS

The FSS result on 21 June for the 95th percentile threshold of precipitation
(a) and wind strength (b) is shown in Figure 10. The x-axis corresponds to
the neighbourhood size in km and the y-axis corresponds to time in UTC. For
each time step (1h from 01 UTC to 23 UTC) and for selected space steps (1
grid point to 80 gridpoints; 1gp represents 8 km) the FSS was calculated. The
blue line represents the believable scale at which a forecast is believable and
the black line represents a random forecast.
Such plots are similar for all meteorological phenomena. At small scales it
results in low values of FSS and increases for larger scales. The relatively high
temporal variability of the believable scale is because of the uncertainty in the
locations of the showers (and more uncertainty for wind strength maxima).
At 5 UTC the precipitation field of the 95th percentile of VERA and COSMO-2
(Figure 8 (c, d)) have slightly different structures but with the same local max-
ima in comparison to the original fields (Figure 8 (a, b)). East of Switzerland,
the precipitation fields of the 95th percentile have a good match in space, but
the structure is totally different. COSMO-2 shows also rain areas in south-
western Germany stretched to northern Switzerland which are not present in
the VERA analysis but results all in all into a relatively low believable scale
(s f ss) of 16 km.
At 10 UTC, Figure 11 (a), (b) show the thresholded precipitation fields of VERA
and COSMO-2 with relatively widespread rain areas but at different places
with nearly no match. The s f ss increases up to 77 km, whereas s f ss is out of
bounds at 21 UTC and this is because of nearly no forecast and observed pre-
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cipitation features and which are additionally distributed in space (Figure 11
(c), (d)).

So it is clear that bigger neighborhood sizes are needed to obtain a better align-
ment between the calculated fractions, what in turn results in higher values of
FSS. The believable scale varies for the precipitation verification between 16
km and 90 km until 18 UTC. Than, the FSSbelievable increase out of 80 grid-
points and this is because of just a few and localized areas, with low precipita-
tion amounts, immediately after the front left the domain.

(a) (b)

Figure 10: The FSS for the 95th percentile threshold on 21 June 2007 for
COSMO-2. Left the verification of precipitation and right of wind.
The blue line represent the believable scale (FSSbelievable = 0.525) and
the black line at f0 = 0.05 represent the scale for a random forecast.

21



(a) (b)

(c) (d)

Figure 11: 95th percentile thresholded precipitation field of VERA (left) and
COSMO-2 (right) at 10 UTC (a)&(b) and at 21 UTC (c)&(d) on 21
June 2007.

The believable scale of FSS for wind strength show a higher variation over
time. This is because of the heterogeneous and spotty wind field of VERA and
COSMO-2. The local maxima of wind strength are distributed over the whole
domain and lead therefore all in all to higher values of s f ss. Of course, the
wind field has always areas with values in such a big domain and so it is not
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possible that the believable scale can get out of bounds (> 80 grid points).
Figure 12 illustrates this by the xy-plots of VERA (a&c) and COSMO-2 (b&d)
wind field for the 95th percentile threshold at 05 UTC (upper panels) and 16
UTC (lower panels). The VERA analysis shows a high maximum behind the
front and other maxima scattered all over the domain. The COSMO-2 maxi-
mum is stretched from west to east and is more patterned the one VERA yields.
The s f ss has a minimum of 42 km at 5 UTC.
The 95th percentile thresholded wind fields at 16 UTC show a better agreement
in the structure of the maxima but with relatively high local errors. For exam-
ple, VERA and COSMO-2 show a maximum in the south of the domain over
Italy but shifted. Additionally, VERA shows a widespread feature in northern
Italy which was not forecast. This leads to a believable scale of 146 km.
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(a) (b)

(c) (d)

Figure 12: 95th percentile thresholded wind field in [m/s] for VERA (left) and
COSMO-2 (right) at 5 UTC (a)&(b) and 16 UTC (c)&(d).
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4.2.2 Structure Amplitude Length - SAL

Wernli et al. (2008) show all three components of the verification of QPF by the
SAL in one figure. This is interesting to evaluate longterm forecasts, but to ver-
ify a single forecast run it is better to show the variability of single components
against forecast leadtime to analyse the quality over forecast lead time. Figure
13 shows this exemplarily for the 21 June component-by-component for pre-
cipitation. The verification of wind by SAL and DAS is shown and discussed
in the next chapter.
Shown are the components for the 95th percentile threshold, enabling a fair
comparison between the different verification methods and a threshold, sug-
gested by Wernli et al., of R∗ = 1

15 Rmax. Rmax is the maximum value of the
VERA analysis of all grid points at the specific time step. To avoid confusion it
should be mentioned that for computing SAL, the field is not transformed into
a binary field to get a statement about structure, amplitude and location error.
The single components in the three panels, computed for both thresholds, have
a high variability over time but with the same overall trend throughout the day.
The structure components (Figure 13 (a)) for the two different thresholds show
deviations, especially until 12 UTC.
So the S-component is an indicator about the structure. As mentioned, the
trend is the same, but there is also a relatively high spread until 12 UTC. This
is explicable with the two different threshold values: At 12 UTC, R∗ = 1.07mm
and the 95th percentile threshold is 2.48 mm and until that time step, R∗ is
always lower than the 95th percentile threshold. By using the latter threshold,
the precipitation field of the forecast looks more peaked in comparison to the
observation field than for R∗ (compare 8 (c)&(d) with Figure 14 (a)&(b)). Af-
ter 12 UTC the divergence between the two lines of the structure component
drop down to zero. This is because of nearly equal values of the threshold and
therefore similar precipitation and observation fields.
The A-component in Figure 13(b) shows a good match by comparing the
amount of the observation- and forecast field for the thresholds R∗ and the
95th percentile.

25



(a) (b)

(c)

Figure 13: SAL components against time - (a) Structure, (b) Amplitude and (c)
Length for 21 June.

The variation corresponds to the time series of the entire amount (Figure 6
(b)) and the 95th percentile threshold (Figure 7 (a)) and therefore gives no
more information, but again underlines the importance to use no fixed thresh-
olds. Until 9 UTC, COSMO-2 predicted an exaggerated pre-frontal precipita-
tion amount in comparison to VERA and this leads to a positive A-component.
The highest positive amplitude component is between 13 UTC and 17 UTC,
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(a) (b)

Figure 14: Observation field (VERA) (a) and forecast field (COSMO-2) (b) on
21 June after applying a threshold of R∗ at 5 UTC.

because of the higher relative overestimation (about 3 times). From 17 UTC to
23 UTC, the A-component is lowest and reaches -1, caused by nearly no fore-
casted precipitation events and goes along with an underestimation by a factor
of 3.

Figure 13(c) shows the L-component with relatively low values between 0.2 and
0.3 until 19 UTC and increase than constantly until 21 UTC. This is because of
just a few rain areas with low rain rates and additionally high distributed in
space. Call to mind that the L component consists of two parts. The first part
is the difference between the computed center of mass of the forecasted and
observed precipitation field, weighted with the largest distance between two
boundary points. If rain areas are spread over the domain (with low rain rates)
in both fields, a complete match of the computed center of mass is virtually
impossible. As a consequence, the second part, which considers the averaged
distance between the centre of mass and single precipitation features, can also
get very high. This is the reason for the relatively high values after 19 UTC.
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4.2.3 Displacement and Amplitude Score - DAS

Finally, this section gives the results of the DAS method (Figure 15), component-
by-component like before for the SAL. To calculate DAS as the sum of AMP

I0

and DIS
Dmax

, the 95th percentile was used as threshold and a subsampling factor
of F = 4, so the coarse-grain pixel elements contain 16 by 16 grid points per
pixel element (24 = 16). The subsampling factor of F = 4 was used, because
then, the computed DAS demonstrate a good accordance to the other methods
and has a high variability over time. The resulting value of the search distance
Dmax is 90.51 grid points (= 724 km). By using percentiles it is obvious that
nobs = n f ct, because the points with values smaller than the used percentile are
set to zero and just the points with higher values (which have the same value
as before thresholding; no binary field) are used to compute DAS. The number
of (nonzero) points of the thresholded fields are equal and the total amplitude
error is then defined as

AMP = 1
2(AMPobs + AMP f ct).

The characteristic intensities I0 are calculated separately for each day as the
mean RMS (root mean square per hour) amplitude of the 95th percentile of the
observation field. Therefore the AMP component has been weighted by the
characteristic I0 = 2.50 mm on 21 June (1.75 mm on 20 June & 2.41 mm on 22
June). Anyhow, AMP

I0
has up to 3 times higher values (due to the peaks) than

the DIS
Dmax

component and in consequence the amplitude component dominates
DAS (Figure 15 (a)) in the overall trend.

For analysing it is necessary to have a look at both components separately.
The weighted amplitude error (Figure 15 (b)) shows relatively high values until
8 UTC, caused by relative high forecast and observed precipitation amount on
the one hand and on the other hand by the spread in the time series of the 95th
percentile (Figure 7 (a)). Then the component decline in a zigzag and drops
nearly to zero at 22 UTC, not fully reaching it because of some observed and
forecast precipitation features.
Figure 15 (c) shows the DIS component with a relatively high variability over
time with two prominent peaks, first at 5 UTC and the second at 21 UTC. The
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(a) (b)

(c)

Figure 15: DAS components against time for precipitation- (a) DAS, (b) AMP
and (c) DIS for 21 June.

reason for the latter peak at 21 UTC is explained already for FSS and SAL,
but the peak at 5 UTC is surprising. So it is necessary to have a look on the
sequence of different stages in the computation of DAS (Figure 16).

The observation is shown in Figure 16 (a) and the forecast in Figure 16 (b)
(rotated through 90◦, caused by the algorithm to compute the fields). It is nec-
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essary to minimise the difference between observation in forecast space and
forecast in observation space. This is shown in Figure 16 (c) by the morphed
observation superimposed with the displacement vector field. The image-
matching algorithm stretch the upper observed precipitation feature in the
forecast space by a divergent vector field. The result is a good accordance
to the stretched forecast. The single feature in the middle of the plot is re-
moved and contributes decisively to the magnitude of the displacement vector
field of the observation (Figure 16 (e)).
The morphed forecast in observation space (Figure 16 (d)) has – in contrast –
a convergent displacement vector field around the upper, stretched precipita-
tion feature. The contribution to the magnitude of DIS is small. In contrast,
the lower feature vanish completely, resulting in high values of DIS in forecast
space (Figure 16 (f)).
In summary, one can say that although the precipitation features of the obser-
vation and forecast mainly agree in location, the contribution of the structure
to the displacement error is relatively high. That is why the DIS component at
5 UTC is high in comparison to s f ss and the L-component of SAL.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Sequence of different stages in the computation of DAS on 21 June
at 5 UTC: observation in observation space (a), forecast in forecast
space (b), morphed observation in forecast space, morphed forecast
in observation space superimposed with displacement vector field
(c,d), DIS in observation space (e) and DIS in forecast space (f).
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5 Comparison and discussion

In the previous chapter, we have shown generic results obtained with the
three verification methods in order to explain how the methods work in reality
by applying them to precipitation and wind fields of the forecast and VERA
analysis. The Fractions Skill Score (FSS) gives a good overview of the believ-
able scale at which a forecast makes sense. The Structure Amplitude Length
(SAL) provides important information about the structure of a precipitation
(or wind) field compared to the forecast. In addition, the amplitude compo-
nent yields whether a forecast is over- or underestimated. The L-component,
as a last point, serves as a good indicator about the error in space. Ampli-
tude (AMP/I0) and displacement error (DIS/Dmax) of DAS contain informa-
tion about the quality of a forecast as well.
In general the three methods have in common that they make a statement about
the location error of a forecast. The emphasis of this section is to investigate
the goodness of the results by comparing location components of these three
verification methods. This leads to the question of how the goodness can be
determined.
It is established that the predictability increases with high synoptic forcing in
contrast to low synoptic forcing, because then the small-scale processes domi-
nate and convective precipitation becomes more unpredictable.
The investigated core case from 20 June 2007 to 22 June 2007 was dominated by
a cold front moving eastward and caused elongated convective showers on 21
June (high synoptic forcing) leading to a homogeneous precipitation field. The
results were shown previously for COSMO-2. On the day before/afterwards
convective events were triggered by the uneven heating of the earth’s surface
caused by solar radiation. This led to a spotty and heterogeneous precipitation
field. Over these three days the wind field was heterogeneous and spotty with
local maxima distributed over the domain. This was tightened by the 95th
percentile but the results are similar for lower thresholds (e.g. 70th percentile)
as well and are not shown in this thesis.
The 95th percentile threshold was used (unless otherwise stated) to compute
the following results.
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5.1 Comparison of daily averages of COSMO-2 and

GEM-LAM

GEM-LAM was the second NWP model investigated – after COSMO-2 – and
the verification methods were also applied to the precipitation and wind fields
measured during the three days in question. Comparing the daily means of
the outcomes, namely the believable scale s f ss, L and DIS for the verification of
precipitation of the two NWP models show a relatively consistent result (Table
1). Note that the value of s f ss for COSMO-2 and GEM-LAM is too low on 20
June, because between 9 UTC and 15 UTC, only some precipitation features
were forecasted/observed and the FSS was set to zero. A comparison of the
means is possible since just the outcomes before 9 UTC and after 15 UTC are
used.
The mean values of the results of COSMO-2 are predominantly smaller in com-
parison to GEM-LAM on the 20 June with low synoptic forcing, as well as on
21 June with high synoptic forcing. The outcomes are approximately equal on
22 June, especially for <L>. <DIS> is slightly higher for COSMO-2 than for
GEM-LAM and the believable scale for COSMO-2 is less by two grid points
(16 km).

Table 1: Mean values of FSSbelievable scale(s f ss), L and DIS/Dmax for the 95th
percentile. Results are computed for COSMO-2 (C-2) and GEM-LAM
(G-L) precipitation field for all three days.

p95
< s f ss > / km <L> / km <DIS> / km

Date C-2 G-L C-2 G-L C-2 G-L
20 June 104 176 350 456 109 152
21 June 88 152 210 350 116 145
22 June 88 104 234 245 137 116
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On 20 June, the values of <s f ss> (104 km, C-2; 176 km, G-L) and <L> (350 km,
C-2; 456 km, G-L) are highest. This does not extend to the DIS component,
which has values of 109 km for COSMO-2 and 152 km for GEM-LAM. The
reason for the lower value of DIS, relative to the believable scale and the L-
component, is the relatively low amount of observed precipitation features on
that day. This leads to a low contribution to the magnitude of the displace-
ment vector field of the observation and hence to a low displacement error. In
addition, the values of the believable scale and the length component of SAL
are approximately equal on 21 June and 22 June for COSMO-2. It is remark-
able that it does not apply to GEM-LAM as well. In contrast the quality of
GEM-LAM is worse on 21 June than on 22 June and the difference between
the mean values on 21 June of the outcomes of COSMO-2 and GEM-LAM are
highest. GEM-LAM is unable to capture the front accurately as can be seen in
Figure 17. Shown is the x-y plot of precipitation for GEM-LAM at 16 UTC as
an example. The comparing of Figure 5 (a & b) for VERA and COSMO-2 with
Figure 17 shows clear that most of the cold front in the precipitation field of
GEM-LAM left the domain.

Figure 17: Precipitation field in [mm/h] of GEM-LAM on 21 June at 16 UTC.
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The results for wind verification are not shown, but in summary the mean
values are higher, except for DIS but are much more variable throughout the
days and NWP models.
One reason for this behaviour is the heterogeneous wind field with maxima
distributed over the domain. That implies that for calculating the FSS, the grid-
box has to become bigger to reach the believable scale. The L-component also
increases because of the great distance between the computed centre of mass
of the wind field and the single features (wind maxima). The DIS component
depends on the distance between the morphed forecast on observation space
and the observation (and vice versa), but it could happen that the features
are out of the search distance and then the DIS component is low. This is a
good opportunity to verify a big domain and to conclude features indirectly.
Nevertheless the comparability of the believable scale and the L-component
with DIS is limited. Additionally, the magnitude of the displacement error
field is lower, by morphing spotty features of forecast and observation fields
(the length of the vectors is smaller).
Using the 99th percentile threshold leads to similar results for precipitation
and wind, but also to higher averages. When using the 70th percentile thresh-
old for wind verification the values decrease negligibly.

5.2 Comparison of hourly values of precipitation and wind

strength

This section focuses on the precipitation verification of COSMO-2 on the 21
June 2007. The discussion of the daily averages has shown that in average
COSMO-2 has a better quality than GEM-LAM. However this is not a statement
about the variability during the course of the day: investigations have shown
that comparability of the three methods is limited. This is because of relatively
fluctuating results of the location components and possible reasons are already
discussed in chapter 5.1.
The results for 95th percentile of precipitation is shown in Figure 18. The plot
contains the time series for the believable scale s f ss (green), the L-component
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of SAL (magenta) and DIS/Dmax of DAS (blue). All these are weighted with
their respective daily maximum value.

Figure 18: Results for COSMO-2 (normalized): s f ss, L- and DIS- component for
the 95th percentile of precipitation on 21 June.

The L-component and DIS/Dmax show a relative high variability over the day
in contrast to s f ss which is smoother. All three time series have a peak and
their maximum normalized value at 21 UTC, which is the time step after the
front vanished completely out of the domain. COSMO-2 is obviously not able
to resolve this process. After that time step, the values first decrease and then
increase at the last time step. It is also remarkable that from 18 UTC on all
three components follow the same trend by increasing until 21 UTC, because
after 18 UTC the front is leaving the domain.
The DIS component also shows a peak at 5 UTC whereas the L-component has
a local minimum which has previously been discussed. In addition, it can be
said that the normalized values of DIS and L are higher than the normalized
values of the believable scale. Thus the obvious question is the quality of the
accordance between the components in their variation over the time.
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5.3 Correlation between the components

The Pearson correlations between the values of the location components were
calculated for each time step for the 95th and 99th percentile thresholded pre-
cipitation and wind fields of the two NWP models.
The results are shown in Table 2 for COSMO-2, compared to VERA and for
the 95th percentile thresholded precipitation fields for the 21 June. Between
all three components exists a positive correlation, best between the believable
scale and the L-component with a coefficient of 0.72. So all three methods lead
to similar statements about the quality of the location error for a deterministic
forecast on day with high synoptic forcing. The Pearson correlation coefficient
has similar, but lower values for the 99th percentile thresholded precipitation
field.

Table 2: Pearson correlation coefficient between location components for the 21
June. Shown is the 95th percentile. For all values, p < 0.05 . The matrix
is symmetric with ones on the main diagonal. To enhance readability
only values above the diagonal are given.

21 June
p95 s f ss DIS L
s f ss 1 0.65 0.72
DIS 1 0.58
L 1

In contrast GEM-LAM (not shown) has a positive correlation between the DIS
component and the believable scale only on 21 June, using the 95th percentile
of precipitation fields. Furthermore, the calculation of the correlation coeffi-
cient of the wind strength forecast by the NWP models and VERA show almost
never a positive correlation between the components.
In summary, it can be said that in general, no correlation exists for precipitation
between location errors of the verification methods in situations with low syn-
optic forcing on the one hand and wind verification for the investigated core
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case on the other hand. But the positive result is that the location components
can be compared on days with high synoptic forcing and they therefore yield
identical information.

6 Summary and outlook

In this thesis, the comparability, quality and consistency of three verification
methods were investigated, especially the believable scale s f ss of the Fractions
Skill Score, the location component L of SAL and DIS of the DAS method. The
methods were applied to the VERA analysis compared to COSMO-2 and GEM-
LAM, all with a resolution of 8 km. The verified parameters are precipitation
(1h accumulated) and wind strength. The 95th and 99th percentile thresholds
were used, as a consequence of a high bias and to allow an investigation of the
spatial distribution of phenomena. These high percentiles are associated with
smaller, more extreme features.

The verification of precipitation shows that the NWP models compute the
fields relatively accurately. The mean of the believable scale varies between
88 km and 104 km for COSMO-2 and between 104 km and 176 km for GEM-
LAM for the 95th percentile. Interestingly, the results for 22 June are nearly
as good as the front passing day (21 June). All methods in use assess the 20
June as the day with the highest values in location errors, except of <DIS>.
The wind strength verification shows similar results, but the <s f ss> is higher.
Looking at the 99th percentile, the believable scale clearly increases for both
NWP models and for all three days, in contrast to <L>, and <DIS/Dmax>. The
behaviour of L can be explained by a high weighting of the L2 component by
high precipitation/wind strength values.
The reasons for these discrepancies are that, on the one hand, the displacement
error field is lower for spotty fields which get morphed as the displacement
vectors have a lower magnitude. On the other hand, forecast and observation
fields with nearly no precipitation barely contribute to the displacement error.
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This leads to nearly no positive correlation between the components on days
with low precipitation amounts. A further reason could be that the search dis-
tance is too small.

All in all, the FSS, SAL and DAS are good instruments to evaluate model er-
rors, which clearly exist on days with low synoptic forcing, represented in this
thesis by the high means of the location components on 20 June. The verifica-
tion of wind (and precipitation) cause difficulties because of the heterogeneous
field with high spatial distribution of the maxima. The direction of the wind
field was not investigated. Hence it seems to be necessary to develop new ver-
ification methods, where both the strength and the direction matter.
Another method to improve the comparability of the verification methods is
to split the domain into smaller areas of interest and to apply the methods in
a second step. It could also be useful to develop a method which is spatially
varying and following areas with high values of precipitation / wind strength
(for example around a cold front).

As an outlook, it is of great interest to use ensemble forecasts and compare
them with ensembles of observations to investigate both the error in observa-
tion and the error of the forecast. Therefore, datasets of COSMO-LEPS and
VERA ensembles are available in MESOVict.

39



40



References

[1] Baldauf, M. A. Seifert, J. Förstner, D. Majewski, and M. Raschendorfer,
2011: Operational Convective-Scale Numerical Weather Prediction with the
COSMO Model: Description and Sensitivities. Mon. Wea. Rev., 139, 3887-
3905.

[2] Dey, S.R.A., G. Leoncini, N.M. Roberts, R.S. Plant, S. Migliorini, 2014: A
Spatial View of Ensemble Spread in Convection Permitting Ensembles. Mon. Wea.
Rev., 142, 4091–4107.

[3] Dorninger, M., M.P. Mittermaier, E. Gilleland, E.E. Ebert, B.G. Brown, and
L.J. Wilson, 2013: MesoVICT: Mesoscale Verification Inter-Comparison over
Complex Terrain. NCAR Technical Note NCAR/TN-505+STR, 23 pp, DOI:
10.5065/D6416V21.

[4] Dorninger, M., T., Gorgas, 2013: Comparison of NWP-model chains by using
novel verification methods. Meteor. Zeitschr. Vol. 22, No. 4 (2013), p. 373 - 393,
doi: 10.1127/0941-2948/2013/0488

[5] Erfani, A., J. Mailhot, S. Gravel, M. Desgagné, P. King, D. Sills, N. McLen-
nan, and D. Jacob, 2005: The high resolution limited area version of the
Global Environmental Multiscale model and its potential operational ap-
plications. 11th converence on mesoscale processes, American Meteorological So-
ciety, Albuquerque, NM, USA.

[6] Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009:
Intercomparison of Spatial Forecast Verification Methods. Wea. Forecasting, 24,
1416–1430.

[7] Gorgas, T., M., Dorninger, 2012: Concepts of pattern-oriented analysis ensemble
based on observational uncertainties, Q. J. R. Meteorol. Soc. Vol. 138, 769-784,
April 2012 A, DOI:10.1002/qj.949

[8] Keil, C., G. C. Craig, 2007: A displacement-based error measure applied in a
regional ensemble forecasting system. Mon. Wea. Rev., 135, 3248 - 3259

41



[9] Keil, C., G.C. Craig, 2009: A displacement and amplitude score employing an
optical flow technique., Spec. Coll. Spatial Forecast Verification Methods, 1297
- 1308

[10] Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of
motion. Tellus, 21A, 289-307, doi:10.1111/j.2153-3490.1969.tb00444.x.

[11] Murphy A.H., 1993: What Is a Good Forecast? An Essay on the Nature of
Goodness in Weather Forecasting. Wea. Forecasting, 8, 281–293.

[12] Wernli, H., M. Paulat, M. Hagen, C. Frei, 2008: SAL-A Novel Quality Mea-
sure for the Verification of Quantitative Precipitation Forecasts. Mon. Wea. Rev.,
136, 4470-4487.

[13] Roberts, N.M., H.W., Lean, 2008: Scale-selective verification of rainfall accu-
mulations from high-resolution forecasts of convective events. Mon. Wea. Rev.,
136, 78-97, doi:10.1175/2007MWR2123.1

[14] Roberts, N.M., 2008: Assessing the spatial and temporal variation in the skill
of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163-169,
doi:10.1002/met.57.

[15] Rombough, H., H. Greene, B. Niska-Aro, B. Power, D. Schmidt, O. Sta-
chowiak, C. Wielki, and A. Yun, 2010: GEM-LAM convective forecasts:
How can they be used in an operational forecast environment?. 25th Conv-
erence on Severe Local Storms

[16] Rossa, A. F. Del Guerra, and Daniel Leuenberger, 2009: An empirical radar
data quality function. Proceeding of the AMS Radar Converence. VA: Williams-
burg.

[17] Weisman, M.L., C.A. Davis, W. Wang, K.W. Manning, and J.B.
Klemp, 2008: Experiences with 0 - 36-h explicit convective forecasts with
the WRF-ARW model., Weather and Forecasting, 23, 407-437, DOI:
10.1175/2007WAF2007005.1.

42



[18] Weusthoff, T., F. Ament, M. Arpagaus, and M. Rotach, 2010: Assessing
the benefits of convection-permitting models by neighborhood verification:
Examples from MAP D-PHASE. Monthly Weather Review, 138(9), 3418-3433.

[19] Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences, 3rd ed. Aca-
demic Press, 676 pp.

43





Acknowledgment

Mein besonderer Dank gilt Dr. Christian Keil für die gute, lehrreiche und
zugleich geduldige Betreuung.
Sehr herzlich bedanke ich mich auch bei Dr. Manfred Dorninger, der mir
anfangs mit Rat und Tat zur Seite stand und mir die richtige Umgebung für
das Thema geschaffen hat.
Außerdem bedanke ich mich bei Felix Liebrich für seine unermüdliche Aus-
dauer beim Korrekturlesen.
Mein letzter Dank gebührt natürlich meinen Bürogenoss*innen, die öfter mal
für die nötige Ablenkung gesorgt haben.


	Introduction
	Data and models
	Observation data
	VERA
	NWP-models

	Methods
	Fractions Skill Score (FSS)
	Structure Amplitude Length Score (SAL)
	Displacement and Amplitude Score (DAS)

	Verification of precipitation and wind
	Precipitation and wind percentiles
	Spatial verification
	Fractions Skill Score - FSS
	Structure Amplitude Length - SAL
	Displacement and Amplitude Score - DAS


	Comparison and discussion
	Comparison of daily averages of COSMO-2 and GEM-LAM
	Comparison of hourly values of precipitation and wind strength
	Correlation between the components

	Summary and outlook
	Acknowledgment

