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(1) Tails of Distributions 

 
 

 

 Analogue to max stability  
 

-- X random variable 
 
Y = X − u “excess” over high threshold u, conditional on X > u 

 
Then Y has an approximate generalized Pareto (GP) distribution 

for large u with cdf: 

 

H(y; ζ*, ξ) = 1 − [1 + ξ (y/ζ*)]
−1/ξ 

,  y > 0, 1 + ξ (y/ζ*) > 0 

 
ζ* > 0 scale parameter  [alternative notation ζ*(u)] 

ξ  shape parameter  (same interpretation as for GEV dist.) 
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(i)  ξ = 0  (exponential type) 
 
  “Light” tail 
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(ii)  ξ > 0  (Pareto type) 
 
 “Heavy” tail 
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(iii)  ξ < 0  (beta type) 
 
Bounded tail  [ y < ζ* / (−ξ)  or x < u + ζ* / (−ξ) ] 
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 Connection between GP & GEV 
 

-- Maximum Mn ≤ u if none of Xt's exceeds u, t = 1, 2, . . ., n 

 

-- Assume Xt 's independent with common cdf F 

 
-- Number of exceedances has binomial distribution with 

parameters:  No. of trials = n  

      Prob. of “success” = 1 − F (u) 

 
-- Using Poisson approximation to binomial 
 
 

   Pr{Mn ≤ u} ≈ exp{−n [1 − F (u)]} 

 
 
  for large n & u such that n [1 − F (u)] ≈ constant 
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 Scaling 
 
-- “Memoryless” property of exponential distribution (parameter ζ*) 

 
 

Pr{Y > y + y′ │Y > y′} = Pr{Y > y} = exp[−(y/ζ*)],  y, y′ > 0  
 

 
Suppose Y represents life span & has exponential distribution:  
 
Conditional distribution of future survival remains exponential 

with same scale parameter (No matter how long individual has 

already survived; i. e., no “aging” or becoming “younger”) 

 

Example:  
 
Waiting time for next bus (if buses arrive at random)
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-- Stability of GP distribution 
 
Lose memoryless property (need to rescale) 

 
Suppose excess Y over threshold u has an exact GP distribution 

with parameters ξ & ζ*(u) 

 
Then the excess over a higher threshold u' > u has GP 

distribution with parameters ξ & ζ*(u') 

 
    ζ*(u') = ζ*(u) + ξ(u' − u),  u' > u 

 
 (i) ξ > 0 implies ζ*(u') > ζ*(u)  (increase “size” of excesses) 
 
 (ii) ξ < 0 implies ζ*(u') < ζ*(u)  (decrease “size” of excesses) 
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 Hurricane damage (1995 US$) 
 
-- Adjusted data (Remove trends in societal vulnerability), 1925-1995 
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 Fit GP distribution to damage from individual storms 
 
-- Use threshold of u = 6 billion $ 
 
-- Parameter estimates and standard errors 
 

 Parameter  Estimate  (Std. Error) 
 
 Scale ζ *  4.589   1.817 

 Shape ξ  0.512   0.341 

 
-- Likelihood ratio test for ξ = 0  (P-value ≈ 0.018) 
 
-- 95% confidence interval for shape parameter ξ 

 (based on profile likelihood): 
 

0.059 < ξ < 1.569
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(2) Return Levels 

 
 

 

 GP distribution 
 

-- Quantile of GP distribution (Invert cdf) 
 

   H
 −1

(1 – p; ζ*, ξ) = (ζ* / ξ) (p
 −ξ

 – 1),  0 < p < 1  

 

-- Complication 
 
 Need to take into account exceedance rate of threshold 
 

(to provide return level corresponding to interpretable return 

period) 
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 Return level calculation 
 

 Pr{Xt > x} = Pr{Xt > x │Xt > u} Pr{ Xt > u},  x > u 

 
 (i) GP distribution for excess over threshold 

 

Pr{ Xt > x │Xt > u} 

 
 (ii) Binomial distribution for exceedance rate 
 

   Pr{ Xt > u} 

  
 Estimate by observed occurrence rate (mle) 
 
 Main source of uncertainty arises in estimating (i) 

So ignore uncertainty in estimating (ii)  
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 Hurricane example 
 
-- Lack of structure in data file 
 

  Reasonable to input average number of damaging hurricanes per 

year (in place of “no. of obs. per year”) 

  
   144 / 71 ≈ 2.03 hurricanes per year 
  

 Estimated 20-yr return level: 17.6 billion $ 
  
 95% confidence interval for 20-year return level (based on profile 

likelihood): 

 
    12.2 billion $ < x(0.05) < 35.6 billion $ 
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(3) Choice of Threshold 

 
 

 Invariance of GP above threshold 

-- Same shape parameter ξ 

-- Reparameterize scale parameter, as threshold u varies: 
 
     ζ*(adj) = ζ*(u) − ξ u 
 
-- Check for stability in parameter estimates as vary threshold 
 

 Trade-off 

-- Better GP approximation for higher threshold 

-- More reliable estimation for lower threshold 

-- Lack of automatic procedure 
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Hurricane damage example
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(4) Declustering 

 
 

(i) Temporal dependence at long time scales 
 
-- GEV and GP approximations still hold for short (or even long 

memory) processes 

 
 Example:  Stationary Gaussian process  
 

 Autocorrelation function: ρk = Cor(Xt , Xt + k), k = 1, 2, . . . 

 
  No effect on limiting distribution if 
 

    ρk ln k → 0 as k → ∞ 

 

 Possible effect in terms of accuracy of approximation
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(ii) Temporal dependence at short time scales 
 

 Concept of lack of “clustering” at high levels  
 

 Pr{Xt + k > u │Xt > u} → 0 as u → ∞, k = 1, 2, . . . 

  

 Stationary Gaussian processes 

-- Lack of clustering at high levels 
 

 Clustering at high levels 
 

-- Daily minimum & maximum temperature (strong evidence) 

-- Daily precipitation (only weak evidence) 

 

 Lack of automatic procedure for declustering 
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 Declustering procedures 
 
-- Runs declustering 
 

Clusters separated by at least r consecutive observations below 

threshold (r = 1, 2, . . .) 

  
 Model cluster maxima (instead of individual cluster members) 
 

GEV & GP approximations still valid  
 

 Concept of “extremal index” θ, 0 < θ ≤ 1  
 

    1/θ ≈ mean cluster size 
 
θ = 1 corresponds to lack of clustering at high levels 
 
Degree of clustering at high levels increases as θ decreases 
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 Phoenix minimum temperature 
 
-- Phoenix, AZ, USA 
 
 Time series of daily minimum temperature (°F) for July-August, 

1948-1990 

 
 But now consider daily time series, not just block minima 
  

-- Lower tail vs. upper tail 
 
 Model lower tail as upper tail after negation 
 
 So consider X* = −X, where X denotes daily minimum temperature 
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 Fit GP distribution to declustered data (ignore any trend for now) 
 

-- Threshold u = −73 °F 
 

-- Use runs declustering (r = 1) 
 
 De-clustering Parameter  Estimate  (Std. Error)   
   

  None   Scale ζ*  3.915   (0.303) 

  r = 1       4.167   (0.501) 
            

  None   Shape ξ   −0.246   (0.049)    

  r = 1       −0.242   (0.079) 

 

-- Mean cluster size 

 262 / 115 ≈ 2.3 days  (very crude estimate of θ ≈ 0.44) 
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 Alternatives to declustering 

 
-- Resampling to estimate standard errors 

 (Still fit GP distribution to original excesses even if clustered) 

 
-- Explicit modeling of temporal dependence at high levels 

(e. g., Markov model)  

 
-- Revisit issue in more detail in EVA Tutorial #3 
 
 (e. g., method to estimate extremal index that does not require 

declustering) 
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(5) Peaks over Threshold/Point Process Representation 

 
 
 

 Rationale 
 

-- Make more use of information available about upper tail 

  (even if only interested in obtaining estimate for block maxima) 

 

 Consider process through which extremes arise 
  

 -- Occurrence 

  (e. g., exceedance of high threshold) 

  
 -- Intensity (or severity) 

  (e. g., excess over threshold) 
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(i) Poisson-GP Model 
 

“Peaks over Threshold” or “Partial Duration Series” 
 

 Poisson process for exceedance of high threshold 
 

-- Event  Xt > u 

  
Rate parameter  λ > 0 
 
Number of events in [0, T] has Poisson distribution with 

parameter λT 

 

 GP distribution for excess over threshold 
 

-- Excess Yt = Xt – u, given Xt > u 

Parameters ξ & ζ* 
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(ii) Point process representation 

 
-- Occurrence & intensity of extreme events 

 
View as points in two-dimensional space 
 

As threshold u → ∞, converges to two-dimensional, non-

homogenous Poisson process (i. e., non-constant rate parameter) 

 
Non-homogenous in vertical dimension because higher excesses 

less likely 

 
Subsumes Poisson-GP model 
 
Also connection to GEV distribution 
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-- GEV parameterization 

  
 Can relate parameters of GEV(μ, ζ, ξ) to parameters of point 

process (λ, ζ*, ξ): 

   (i) Shape parameter ξ identical 

  (ii) ln λ = − (1/ξ) ln[1 + ξ(u − μ)/ζ] 

  (iii) ζ* = ζ + ξ(u − μ) 
  
 
 Change of block size for GEV distribution: 
   
 Time scaling constant h  (annual max. of daily data,  h ≈ 1/365.25) 

Time scale h for GEV(μ, ζ, ξ) to time scale h' for GEV(μ', ζ', ξ)    

 

ζ' = ζ δ
ξ
,  μ' = μ + [ζ'(1 − δ

−ξ 
)] / ξ,  where δ = h/h' 
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 Two different approaches to parameter estimation 
 
-- Poisson-GP (or orthogonal) approach 
 
 Fit Poisson & GP components separately 

  Convenient for estimation 

  More difficult to interpret (especially with covariates) 

 
-- Point process (with GEV parameterization) 
 
 Fit two-dimension, non-homogenous Poisson process 
 
  More difficult to estimate 

  Easier to interpret (especially with covariates) 
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(6) Point Process Approach under Stationarity 

 
 
 

 Stationarity 
 

-- Poisson-GP and Point Process equivalent 
 

Can obtain same parameter estimates (indirectly through use of 

relationships between two parameterizations) 

  

-- Point process approach still has advantages 
  
 Scale parameter invariant with respect to threshold 
  
 Avoid need to combine uncertainty from two components as in 

Poisson-GP model 
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 Fort Collins daily precipitation 
 
-- Now analyze daily data instead of only annual maxima (but ignore 

annual cycle for now) 

  
  Estimation Method   Parameter   Estimate 

 
(i) Orthogonal    Rate λ    10.6 per yr. 

(u = 0.395 in)   Scale ζ*   0.322 

       Shape ξ   0.212 

 
(ii) Point process   Location μ    1.383 

(u = 0.395 in,   Scale ζ    0.532 

h = 1/365.25)   Shape ξ   0.212 

 
  



 34 

-- Verify that two sets of parameter estimates are consistent 
  

 ln λ = − (1/ξ) ln[1 + ξ(u − μ)/ζ] ≈ 2.360  [vs. ln(10.6) ≈ 2.361] 
  
 ζ* = ζ + ξ(u − μ) ≈ 0.323  (vs. 0.322) 
 
 

 Diagnostics for point process approach 
 

-- Indirectly fitted GEV distribution for annual maxima  
 

 So one diagnostic would be Q-Q plot for annual maxima  

 (Looks fairly similar to one already shown for GEV distribution 

fitted directly to annual maxima) 
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(7) Point Process Approach under Nonstationarity 

 
 

 Flexibility 

-- Introduce annual cycles or other covariates on daily time scale 

 

 Poisson-GP model 
 
-- Introduce nonstationarity separately into two components 
 
 Occurrence:  Poisson process with rate parameter λ(t) 

 Excess:  GP distribution with parameters ζ*(t) & ξ(t) 

 

 Point process approach 
 

-- Introduce nonstationarity in GEV parameters μ(t), ζ(t), ξ(t) 

Threshold u(t) can be time varying as well 
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 Fort Collins precipitation example 
 
-- Threshold u = 0.395 in  (could be time varying as well) 

 Length of year T ≈ 365.25 days 

 
-- Poisson-GP model 

 (i) Annual cycle in Poisson rate parameter 
 

ln λ(t) = λ0 + λ1 sin(2πt / T) + λ2 cos(2πt / T) 

 
  Parameter  Estimate  (Std. Error) 

  Rate: λ0  −3.721    

    λ1    0.221   (0.045) 

    λ2  −0.846   (0.049) 

 

LRT for λ1 = λ2 = 0  (P-value ≈ 0) 
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(ii) Annual cycle in scale parameter of GP distribution 
 

ln ζ*(t) = ζ0* + ζ1* sin(2πt / T) + ζ2* cos(2πt / T) 

 
  Parameter  Estimate  (Std. Error) 

  Scale: ζ0*  −1.238    

    ζ1*    0.088   (0.048) 

    ζ2*  −0.303   (0.069) 

  Shape ξ    0.181 
 

Likelihood ratio test for ζ1* = ζ2* = 0  (P-value < 10
−5

) 

 Q-Q plot:  Transform non-stationary GP to exponential dist. 
 

εt = [1/ξ(t)] ln{1 + ξ(t) [Yt / ζ*(t)]} 
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-- Point process approach (u = 0.395 in,  h = 1/365.25) 
 

Annual cycles in location & scale parameters of GEV distribution: 

μ(t) = μ0 + μ1 sin(2πt / T) + μ2 cos(2πt / T) 

ln ζ(t) = ζ0 + ζ1 sin(2πt / T) + ζ2 cos(2πt / T) 

 
Parameter  Estimate (Std. Error)  LRT 

Location: μ0    1.281 

   μ1  −0.085   (0.031)  μ1 = μ2 = 0 

   μ2  −0.806   (0.043)  (P-value ≈ 0) 

Scale: ζ0  −0.847    

   ζ1  −0.123   (0.028)  ζ1 = ζ2 = 0     

   ζ2  −0.602   (0.034)  (P-value ≈ 0) 

Shape ξ    0.182 
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 Notes about fitted point process model 

 
-- Time varying threshold u(t) (i. e., higher in summer than in winter) 

would be more appropriate, but does not affect results much  

 
-- Declustering (r = 1) does not affect results much (except for larger 

standard errors) 

 
-- Return levels for annual maxima 
 
 Assume independence on daily time scale 
  
 Then can calculate return levels for annual maxima from GEV 

distribution with seasonally varying parameters  

  
 (But has little effect on return level estimates for annual maxima) 
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 Comparison of Poisson-GP and point process models 
 

-- Lack of equivalence 
 
 Sine waves for parameters of Poisson and GP components: 

 Do not necessarily correspond to sine waves for GEV parameters 

in point process model 

 
Annual cycle in terms of GEV parameters is more interpretable 

theoretically (arguably) 



 42 

Homework 

 
 
 

Generate pseudo random variables X1, X2, . . ., Xn iid N(0, 1) 

and record max{X1, X2, . . ., Xn}, say with block size n = 100. 

 
Repeat to obtain T = 10,000 sample maxima and fit GEV distribution 

to these data. 

 
Are the results obtained consistent with the normal distribution 

being in the domain of attraction of the Gumbel (i. e., shape 

parameter ξ = 0)? 


