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(1) Penultimate Approximations

o “Ultimate” Extreme Value Theory

-- GEV distribution as limiting distribution of maxima
X1, X2, ..., Xp Independent with common cdf F

Mn — maX{ Xl, X2, ooy Xn}

e Penultimate Extreme Value Theory

-- Suppose F in domain of attraction of Gumbel type (i. e., £ = 0)

-- Still preferable in nearly all cases to use GEV as approximate

distribution for maxima (i. e., act as if § # 0)



-- Expression (as function of block size n) for shape parameter &,
“Hazard rate” (or “failure rate”):
HF (x) = F'(x) 1 [1 = F(x)]
Instantaneous rate of “failure” given “survived” until x
Alternative expression: Hg (X) ==[In(1 - F)]' (x)

One choice of shape parameter (block size n):

&n = (L/HE)" (X) Ix=u(n)

Here u(n) is “characteristic largest value”

un) = F (1 - 1/n)

[or (1 = 1/n)th quantile of F ]



-- Because F assumed in domain of attraction of Gumbel,

& — O as block sizen — =

-- More generally, can use behavior of Hg (x) for large x to determine

domain of attraction of F

In particular, if

(1/Hg)' (x) > 0as x — «

then Fis in domain of attraction of Gumbel

Note: Straightforward to show that hazard rate of lognormal
distribution satisfies above condition (i. e., in domain of attraction
of Gumbel)



e Example: Exponential Distribution

-- Exact exponential upper tail (unit scale parameter)

1-F(X)=exp(=x), x>0

-- Penultimate approximation

Hazard rate: He(x)=1, x>0

(Constant hazard rate consistent with memoryless property)

Shape parameter: §,=0

So no benefit to penultimate approximation



e Example: Normal Distribution (with zero mean & unit variance)

-- Fisher & Tippett (1928) proposed Weibull type of GEV as

penultimate approximation

Hazard rate: Hep(X) = X, for large x
[Recall that 1 — ®(x) = @(x) / X]

Characteristic largest value: u(n)=(2Inn )1/2, for large n
Penultimate approximation is Weibull type with

¢h==-1/(2Inn)

For example: &100 = =0.11, &35 = -0.085



e Example: “Stretched Exponential” Distribution

-- Traditional form of Weibull distribution (Bounded below)
1-F(x)=exp(-x°), x>0, c>0

where c is shape parameter (unit scale parameter)

Hazard rate: He(x)=c x®, x>0

Characteristic largest value: u(n) = (In n)llC

Penultimate approximation has shape parameter
&h=(1-c)/(clnn)

(i)c>1implies§, 10 as n — « (i. e., Weibull type)

(ii)c<limplies§, | 0 asnh — « (i.e., Fréchet type)



(2) Origin of Bounded and Heavy Tails

e Upper Bounds / Penultimate approximation
-- Weibull type of GEV (i. e., § <0)

For instance, provides better approximation than Gumbel type
when “parent” distribution F:
(i) Normal (e. g., for temperature)

(ii) Stretched exponential with ¢ > 1 (e. g., for wind speed)

-- Apparent upper bound

Complicates interpretation (e. g., “thermostat hypothesis” or

maximum intensity of hurricanes)



e Heavy tails / Penultimate approximation

-- Fréchet type of GEV (i. e., £ > 0)

For instance, provides better approximation than Gumbel when
parent distribution F:

Stretched exponential distribution with c <1
-- Possible explanation for apparent heavy tail of precipitation
Wilson & Toumi (2005):

Based on physical argument, proposed stretched exponential
with ¢ = 2/3 (Universal value, independent of season or location)

as distribution for heavy precipitation
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-- Simulation experiment

Generated observations from stretched exponential distribution

with shape parameter ¢ = 2/3

Determine maximum of sequence of length n = 100, M1qg

(Annual maxima: Daily precipitation occurrence rate = 27%)

Annual prec. maxima: Typical estimated §=0.10 to 0.15

(Penultimate approximation gives &0 = 0.11)

Fitted GEV distribution (Sample size = 1000):

Obtained estimate of = 0.12



Observed

Q-Q Plot: Stretched exponential simulation
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e Heavy Tails / Chance mechanism
-- Mixture of exponential distributions
Suppose X has exponential distribution with scale parameter o*:
Pr{X>x | o*} = exp[=(x/o*)], x>0, 6*>0
Further assume that the rate parameter v = 1/o* varies according
to a gamma distribution with shape parameter a (unit scale), pdf:
fu (v; @) = [M(@)] ™ v*™" exp(-v), a>0
The unconditional distribution of Y is heavy-tailed:
Pr{X>x}=(1+x) "

(i.e., exact GP distribution with shape parameter § = 1/a)



-- Simulation experiment
Induce heavy tail from conditional light tails
Let rate parameter of exponential distribution have gamma

distribution with shape parameter a =2

Then unconditional (mixture) distribution is GP with shape

parameter § = 0.5

Fit GP distribution to simulated exponential mixture
(Sample size = 1000):

Obtained estimate of § = 0.51
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Observed

Q-Q Plot: Exponential mixture
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(3) Clustering at High Levels

e As example, consider stationary Gaussian process

-- Joint distribution of X; and X+ is bivariate normal with

autocorrelation coefficient p, k=1, 2, . ..

-- S0 consider two random variables (X, Y) with bivariate normal

distribution with correlation coefficient p, [p| < 1

No “clustering at high levels” (in asymptotic sense; i. e., extremal
index 0 = 1):

Pr{Y>u [X>u} > 0asu—



Bivariate normal distribution (rho = 0.75)

X

Simulation (sample size = 10,000)
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Bivariate normal distribution (rho = 0.75)

P L SN

X

Simulation (sample size = 10,000)
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Pr{Y >u| X>u}

Bivariate normal distribution
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e |[nterpretation of extremal index 8,0<0=s1
(i) Mean cluster length = 1/6

(i1) Effective sample size

(as if take maximum of n* = nB@ “unclustered” observations)

Note: Does not resemble same concept based on time averages

Effect of 8 <1 on GEV distribution:

Adjustment to location and scale parameters, gy and o, but no

adjustment to shape parameter ¢

In block maxima approach, effect of 8 <1 automatically subsumed

In fitted parameters of GEV (could affect approximation accuracy)



e “Intervals estimator” of extremal index 0 (Ferro-Segers 2003)

-- “Interexceedance” times (i. e., time between exceedances)

(i) If Xy >u & Xi+1 > U, then interexceedance time =1

(iD) If X; > u, Xi+1 < U, Xi+2 > U, then interexceedance time = 2, etc.

Coefficient of variation (i. e., st. dev. / mean) of interexceedance
times converges to function of 8 as threshold u — «

Does not require identification of clusters (could chose runs

declustering parameter r so that mean cluster length = 1/0)

-- Confidence interval for 0
Resample interexceedance times (because of extremal

dependence, need to modify conventional bootstrap)
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Extremal index

Fort Collins summer maximum temperature
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Extremal index
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(4) Complex Extreme Events

e Heat waves

-- Extreme weather phenomenon

-- Lack of use of statistical methods based on extreme value theory
-- Complex phenomenon / Ambiguous concept

-- Focus on hot spells instead

(Derive more full-fledged heat waves from model for hot spells)
-- Devise simple model (only use univariate extreme value theory)

-- Simple enough to incorporate trends (or other covariates)



Definition of Hot Spell

Maximum temperature (oC)

TN

10 20 30 40 a0
Time (days)
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e Start with point process (or Poisson-GP) model

-- Rate of occurrence of clusters

Modeled as Poisson process (rate parameter A)

-- Intensity of cluster
Cluster maxima modeled as GP distribution (shape parameter &,

scale parameter o%)

e Retain clusters (“hot spells”), rather than declustering

-- Model cluster statistics
(i) Duration (e. g., geometric distribution with mean 1/0)

(i) Dependence of excesses within cluster (conditional GP model)



e Model for excesses with cluster (runs parmeterr =1)

--Let Y1, Yo, ..., Yxdenote excesses over threshold within given
cluster / spell (assume of length k > 1)
(i) Model first excessY; as unconditional GP distribution (instead
of cluster maxima)

(i) Model conditional distribution of Y2 given Y1 as GP with scale
parameter depending on Yq; e. g., with linear link function

o*(y) = oo* + 01"y, given Y1 =y
Similar model for conditional distribution of Y3 given Y, (etc.)

Requires only univariate extreme value theory (not multivariate)
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Second exceedance (oF)

Phoenix Maximum Temperature
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e Conditional distribution of Y, given Y1 =y

-- Conditional mean [increases with o*(y)]

E(Y2 |[Yi=y)=0*y)/(1-§), §<1
-- Conditional variance (increases with mean)

Var(Ys | Y1 =y) = [E(Y2 [ Y1 =)1° 1 (1-28), §<1/2
-- Conditional quantile function

F'p; o), & = [0*(y) /§1[(1 - p) ° =11, 0<p<1

Increases more rapidly with o*(y) for higher p
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Paris
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e [ntroduction of trends
-- Cluster rate

Trend in mean of Poisson rate parameter A(s), year s

-- Cluster length

Trend in mean of geometric distribution 1/6(s), year s

-- Cluster maxima (or first excess)

Trend in scale parameter of GP distribution o*(s), year s

-- Other covariates such as index of atmospheric blocking



Mean spell length per summer

1940 1960 1980 2000
Year

Phoenix (GLM with log link, P-value = 0.01)
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(5) Risk Communication under Stationarity

e Interpretation of return level x(p) (under stationarity)

-- Stationarity implies identical distributions

(not necessarily independence)

(i) Expected waiting time (under temporal independence)

Waiting time W has geometric distribution:

PH{W=Kk}=(1-p) 'p,k=1,2,..., E(W)=1/p

(1) Length of time Ty, for which expected number of events =1

1 = Expected no. events =T, p, so Ty = 1/p
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(6) Risk Communication under Nonstationarity

e Options

-- Retain one of these two interpretations

Not clear which one is preferable:
Property (ii) is easier to work with (like average probability)

Property (i) may be more meaningful for risk analysis

-- Switch to “effective” return period and “effective” return level

(i. e., quantiles varying over time)



Moving flood plain from year-to-year (not necessarily feasible?)
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e Alternative concept

-- EXtreme event X; > u

-- Choose threshold u to achieve desired value of

Pr{One or more events over time interval of length T}
-- Under stationarity (and temporal independence)

As an example, if p = 0.01 (i. e., 100-yr return level):
Pr{one or more events over 30 yrs} =1 — (0.99)30 = 0.26

Pr{one or more events over 100 yrs} =1 - (0.99)100 = 0.63

40



