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(1) Penultimate Approximations 

 
 
 

 “Ultimate” Extreme Value Theory 
 
-- GEV distribution as limiting distribution of maxima 
  

 X1, X2, . . ., Xn independent with common cdf F 

 

Mn = max{ X1, X2, . . ., Xn} 

 

 Penultimate Extreme Value Theory 

-- Suppose F in domain of attraction of Gumbel type (i. e., ξ = 0) 

 
-- Still preferable in nearly all cases to use GEV as approximate 

distribution for maxima (i. e., act as if ξ ≠ 0) 
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-- Expression (as function of block size n) for shape parameter ξn  

 
“Hazard rate” (or “failure rate”): 
 

HF (x) = F'(x) / [1 − F(x)] 

 
 Instantaneous rate of “failure” given “survived” until x  
  

 Alternative expression:  HF (x) = −[ln(1 – F)]' (x) 

 
 One choice of shape parameter (block size n): 

  ξn =  (1/HF)' (x) |x=u(n)   

 Here u(n) is “characteristic largest value” 

  u(n) = F
 −1

(1 − 1/n)      

  
 [or (1 − 1/n)th quantile of F ] 
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-- Because F assumed in domain of attraction of Gumbel, 
    

    ξn → 0 as block size n → ∞ 

 

-- More generally, can use behavior of HF (x) for large x to determine 

domain of attraction of F 

  
 In particular, if 
 

    (1/HF)' (x) → 0 as x → ∞ 

 
 then F is in domain of attraction of Gumbel 
 
 
 Note:  Straightforward to show that hazard rate of lognormal 

distribution satisfies above condition (i. e., in domain of attraction 

of Gumbel) 
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 Example:  Exponential Distribution 
 

-- Exact exponential upper tail (unit scale parameter) 
 

     1 – F(x) = exp(−x
 
),  x > 0 

  

-- Penultimate approximation 

  
 Hazard rate:  HF (x) = 1 ,  x > 0 
 
 (Constant hazard rate consistent with memoryless property) 
 

 Shape parameter: ξn = 0 

 
 So no benefit to penultimate approximation 
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 Example:  Normal Distribution (with zero mean & unit variance) 
 
-- Fisher & Tippett (1928) proposed Weibull type of GEV as 

penultimate approximation 

 

Hazard rate:  HΦ(x) ≈ x,  for large x   

 
[Recall that 1 – Φ(x) ≈ φ(x) / x] 
 

Characteristic largest value:   u(n) ≈ (2 ln n )
1/2

,  for large n
 

 
Penultimate approximation is Weibull type with 

 

ξn ≈ − 1 / (2 ln n ) 

 

 For example:  ξ100 ≈ −0.11,  ξ365 ≈ −0.085 
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 Example:  “Stretched Exponential” Distribution 
 
-- Traditional form of Weibull distribution (Bounded below) 

     1 – F(x) = exp( −x
 c

),  x > 0,  c > 0 

 where c is shape parameter (unit scale parameter) 
 

 Hazard rate:  HF (x) = c x
 c−1

,  x > 0
 

  

 Characteristic largest value:  u(n) = (ln n)
1/c 

 
 Penultimate approximation has shape parameter 

 

  ξn ≈ (1 – c) / (c ln n) 

  

 (i) c > 1 implies ξn ↑ 0  as n → ∞  (i. e., Weibull type) 

 (ii) c < 1 implies ξn ↓ 0  as n → ∞  (i. e., Fréchet type) 
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(2) Origin of Bounded and Heavy Tails

 
 

 Upper Bounds / Penultimate approximation 
 

-- Weibull type of GEV (i. e., ξ < 0) 
 
For instance, provides better approximation than Gumbel type 

when “parent” distribution F: 

(i) Normal (e. g., for temperature)  

(ii) Stretched exponential with c > 1 (e. g., for wind speed) 

 
-- Apparent upper bound 
 
 Complicates interpretation (e. g., “thermostat hypothesis” or 

maximum intensity of hurricanes) 
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 Heavy tails / Penultimate approximation 
 
-- Fréchet type of GEV (i. e., ξ > 0)  

  
 For instance, provides better approximation than Gumbel when 

parent distribution F: 

 Stretched exponential distribution with c < 1 
 
-- Possible explanation for apparent heavy tail of precipitation 
 
 Wilson & Toumi (2005): 
  
 Based on physical argument, proposed stretched exponential 

with c = 2/3 (Universal value, independent of season or location) 

as distribution for heavy precipitation 
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-- Simulation experiment 

 
 Generated observations from stretched exponential distribution  

with shape parameter c = 2/3 

 

 Determine maximum of sequence of length n = 100, M100 

(Annual maxima: Daily precipitation occurrence rate ≈ 27%) 

 
Annual prec. maxima: Typical estimated ξ ≈ 0.10 to 0.15 

(Penultimate approximation gives ξ100 ≈ 0.11) 

 
Fitted GEV distribution (Sample size = 1000): 
 
 Obtained estimate of ξ ≈ 0.12 
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 Heavy Tails / Chance mechanism 
 

-- Mixture of exponential distributions 
 

 Suppose X has exponential distribution with scale parameter σ*: 
 

Pr{X > x │σ*} = exp[−(x/σ*)],  x > 0,  σ* > 0 
 

Further assume that the rate parameter ν = 1/σ* varies according 

to a gamma distribution with shape parameter α (unit scale), pdf: 

 

fν (ν; α) = [Γ(α)]
−1

 ν
α−1

 exp(−ν),  α > 0 

 
 The unconditional distribution of Y is heavy-tailed:  
 

    Pr{X > x} = (1 + x)
−α

 

 
 (i.e., exact GP distribution with shape parameter ξ = 1/α) 
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-- Simulation experiment 
 
 Induce heavy tail from conditional light tails 
 
 Let rate parameter of exponential distribution have gamma 

distribution with shape parameter α = 2 

  
 Then unconditional (mixture) distribution is GP with shape 

parameter ξ = 0.5 

 
 Fit GP distribution to simulated exponential mixture 

 (Sample size = 1000): 

 
  Obtained estimate of ξ ≈ 0.51 
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(3) Clustering at High Levels 

 
 

 

 As example, consider stationary Gaussian process 
 

-- Joint distribution of Xt and Xt+k is bivariate normal with 

autocorrelation coefficient ρk, k = 1, 2, . . .  

 
-- So consider two random variables (X, Y) with bivariate normal 

distribution with correlation coefficient ρ, |ρ| < 1 

 
No “clustering at high levels” (in asymptotic sense; i. e., extremal 

index θ = 1): 

 

Pr{Y > u │X > u} → 0 as u → ∞ 
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Simulation (sample size = 10,000)
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Simulation (sample size = 10,000)
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  Interpretation of extremal index θ, 0 < θ ≤ 1 
 

 (i) Mean cluster length ≈ 1/θ  
 

(ii) Effective sample size 

(as if take maximum of n* = nθ “unclustered” observations) 
 
Note:  Does not resemble same concept based on time averages 
 

Effect of θ < 1 on GEV distribution: 
 
Adjustment to location and scale parameters, μ and σ, but no 

adjustment to shape parameter ξ  

 
In block maxima approach, effect of θ < 1 automatically subsumed 

in fitted parameters of GEV (could affect approximation accuracy) 
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 “Intervals estimator” of extremal index θ (Ferro-Segers 2003) 

 
-- “Interexceedance” times (i. e., time between exceedances) 

 (i) If Xt > u & Xt+1 > u, then interexceedance time = 1 

(ii) If Xt > u, Xt+1 < u, Xt+2 > u, then interexceedance time = 2, etc. 

 
Coefficient of variation (i. e., st. dev. / mean) of interexceedance 

times converges to function of θ as threshold u → ∞ 

Does not require identification of clusters (could chose runs 

declustering parameter r so that mean cluster length ≈ 1/θ) 

 
-- Confidence interval for θ 

 Resample interexceedance times (because of extremal 

dependence, need to modify conventional bootstrap) 
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Gaussian first-order autoregressive process with ρ1 = 0.25
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Gaussian first-order autoregressive process with ρ1 = 0.75
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Evidence of clustering at high levels
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Lack of evidence of clustering at high levels
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(4) Complex Extreme Events 

 
 

 Heat waves 
 
-- Extreme weather phenomenon 
 
-- Lack of use of statistical methods based on extreme value theory 
 
-- Complex phenomenon / Ambiguous concept 
 
-- Focus on hot spells instead 

(Derive more full-fledged heat waves from model for hot spells) 
 
-- Devise simple model (only use univariate extreme value theory) 
 
-- Simple enough to incorporate trends (or other covariates) 
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 Start with point process (or Poisson-GP) model 
 
-- Rate of occurrence of clusters 

 Modeled as Poisson process (rate parameter λ) 

 
-- Intensity of cluster 

 Cluster maxima modeled as GP distribution (shape parameter ξ, 

scale parameter σ*) 

 

 Retain clusters (“hot spells”), rather than declustering 
 

-- Model cluster statistics 

 (i) Duration (e. g., geometric distribution with mean 1/θ) 

(ii) Dependence of excesses within cluster (conditional GP model) 
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 Model for excesses with cluster (runs parmeter r = 1) 
 

-- Let Y1, Y2, . . ., Yk denote excesses over threshold within given 

cluster / spell (assume of length k > 1) 

(i) Model first excessY1 as unconditional GP distribution (instead 

of cluster maxima) 

(ii) Model conditional distribution of Y2 given Y1 as GP with scale 

parameter depending on Y1;  e. g., with linear link function 

   σ*(y) = σ0* + σ1* y,  given Y1 = y 

 

Similar model for conditional distribution of Y3 given Y2 (etc.) 

  
 Requires only univariate extreme value theory (not multivariate) 
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 Conditional distribution of Y2 given Y1 = y 

 
-- Conditional mean  [increases with σ*(y)] 
 

   E(Y2 │Y1 = y) = σ*(y) / (1 − ξ),  ξ < 1 

 

-- Conditional variance  (increases with mean) 
 

   Var(Y2 │Y1 = y) = [E(Y2 │Y1 = y)]
2
 / (1 − 2 ξ),  ξ < 1/2 

 

-- Conditional quantile function 
   

   F
 −1

[p; σ*(y), ξ] = [σ*(y) / ξ ] [(1 − p)
−ξ

 − 1],  0 < p < 1
 

 

 Increases more rapidly with σ*(y) for higher p 
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 Introduction of trends 
 
-- Cluster rate  

 Trend in mean of Poisson rate parameter λ(s), year s 

 
-- Cluster length  

 Trend in mean of geometric distribution 1/θ(s), year s 

 
-- Cluster maxima  (or first excess) 

 Trend in scale parameter of GP distribution σ*(s), year s 

 
-- Other covariates such as index of atmospheric blocking 
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Phoenix  (GLM with log link, P-value ≈ 0.01)
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(5) Risk Communication under Stationarity 

 
 
 

 Interpretation of return level x(p)  (under stationarity) 
 
-- Stationarity implies identical distributions 

(not necessarily independence) 
 

(i) Expected waiting time (under temporal independence) 

 Waiting time W has geometric distribution: 
 

  Pr{W = k} = (1 − p)
k−1

p,  k = 1, 2, . . .,  E(W) = 1/p 

 

(ii) Length of time Tp for which expected number of events = 1  

 

  1 = Expected no. events = Tp p,  so Tp = 1/p 
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(6) Risk Communication under Nonstationarity 

 
 

 Options 

 
-- Retain one of these two interpretations 
 

Not clear which one is preferable: 

Property (ii) is easier to work with (like average probability) 

Property (i) may be more meaningful for risk analysis 

 
-- Switch to “effective” return period and “effective” return level 

 (i. e., quantiles varying over time) 
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Moving flood plain from year-to-year (not necessarily feasible?) 
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 Alternative concept 
 

-- Extreme event Xt > u 

 
-- Choose threshold u to achieve desired value of 

  Pr{One or more events over time interval of length T} 
 
-- Under stationarity (and temporal independence)  
 
 As an example, if p = 0.01 (i. e., 100-yr return level): 
 

  Pr{one or more events over 30 yrs} = 1 – (0.99)
30

 ≈ 0.26 

 

  Pr{one or more events over 100 yrs} = 1 – (0.99)
100

 ≈ 0.63 

   


