EVA Tutorial #3

ISSUES ARISING IN EXTREME VALUE ANALYSIS

Rick Katz

Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA

email: rwk@ucar.edu

Home page: www.isse.ucar.edu/staff/katz/

Lecture: www.isse.ucar.edu/extremevalues/docs/eva3.pdf

- (1) Penultimate Approximations
- (2) Origin of Bounded and Heavy Tails
- (3) Clustering at High Levels
- (4) Complex Extreme Events
- (5) Risk Communication under Stationarity
- (6) Risk Communication under Nonstationarity

- "Ultimate" Extreme Value Theory
- -- GEV distribution as limiting distribution of maxima

 X_1, X_2, \ldots, X_n independent with common cdf F

$$M_n = \max\{X_1, X_2, ..., X_n\}$$

- Penultimate Extreme Value Theory
- -- Suppose F in domain of attraction of Gumbel type (i. e., $\xi = 0$)
- -- Still preferable in nearly all cases to use GEV as approximate distribution for maxima (i. e., act as if $\xi \neq 0$)

-- Expression (as function of block size *n*) for shape parameter ξ_n

"Hazard rate" (or "failure rate"):

$$H_F(x) = F'(x) / [1 - F(x)]$$

Instantaneous rate of "failure" given "survived" until x

Alternative expression: $H_F(x) = -[\ln(1 - F)]'(x)$

One choice of shape parameter (block size *n*):

$$\xi_n = (1/H_F)'(x)|_{x=u(n)}$$

Here *u*(*n*) is "characteristic largest value"

$$u(n) = F^{-1}(1 - 1/n)$$

[or (1 - 1/n)th quantile of F]

-- Because *F* assumed in domain of attraction of Gumbel,

 $\xi_n \rightarrow 0$ as block size $n \rightarrow \infty$

-- More generally, can use behavior of $H_F(x)$ for large x to determine domain of attraction of F

In particular, if

 $(1/H_F)'(x) \rightarrow 0$ as $x \rightarrow \infty$

then *F* is in domain of attraction of Gumbel

Note: Straightforward to show that hazard rate of lognormal distribution satisfies above condition (i. e., in domain of attraction of Gumbel)

• Example: Exponential Distribution

-- Exact exponential upper tail (unit scale parameter)

$$1 - F(x) = \exp(-x), x > 0$$

-- Penultimate approximation

Hazard rate: $H_F(x) = 1$, x > 0

(Constant hazard rate consistent with memoryless property)

Shape parameter: $\xi_n = 0$

So no benefit to penultimate approximation

- Example: Normal Distribution (with zero mean & unit variance)
- -- Fisher & Tippett (1928) proposed Weibull type of GEV as penultimate approximation

Hazard rate: $H_{\Phi}(x) \approx x$, for large x

[Recall that $1 - \Phi(x) \approx \varphi(x) / x$]

Characteristic largest value: $u(n) \approx (2 \ln n)^{1/2}$, for large n

Penultimate approximation is Weibull type with

 $\xi_n \approx -1/(2 \ln n)$

For example: $\xi_{100} \approx -0.11$, $\xi_{365} \approx -0.085$

• Example: "Stretched Exponential" Distribution

-- Traditional form of Weibull distribution (Bounded below)

$$1 - F(x) = \exp(-x^{c}), x > 0, c > 0$$

where *c* is shape parameter (unit scale parameter)

Hazard rate: $H_F(x) = c x^{c-1}, x > 0$

Characteristic largest value: $u(n) = (\ln n)^{1/c}$

Penultimate approximation has shape parameter

 $\xi_n \approx (1-c) / (c \ln n)$

(i) c > 1 implies $\xi_n \uparrow 0$ as $n \to \infty$ (i. e., Weibull type)

(ii) c < 1 implies $\xi_n \downarrow 0$ as $n \rightarrow \infty$ (i. e., Fréchet type)

- Upper Bounds / Penultimate approximation
- -- Weibull type of GEV (i. e., $\xi < 0$)

For instance, provides better approximation than Gumbel type when "parent" distribution *F*:

- (i) Normal (e.g., for temperature)
- (ii) Stretched exponential with c > 1 (e.g., for wind speed)
- -- Apparent upper bound

Complicates interpretation (e.g., "thermostat hypothesis" or maximum intensity of hurricanes)

- Heavy tails / Penultimate approximation
- -- Fréchet type of GEV (i. e., $\xi > 0$)

For instance, provides better approximation than Gumbel when parent distribution *F*:

Stretched exponential distribution with c < 1

-- Possible explanation for apparent heavy tail of precipitation Wilson & Toumi (2005):

Based on physical argument, proposed stretched exponential with c = 2/3 (Universal value, independent of season or location) as distribution for heavy precipitation -- Simulation experiment

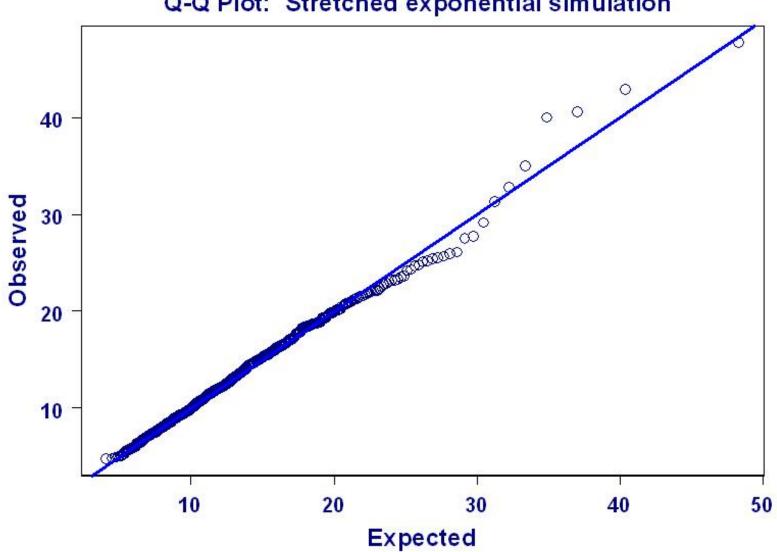
Generated observations from stretched exponential distribution with shape parameter c = 2/3

Determine maximum of sequence of length n = 100, M_{100} (Annual maxima: Daily precipitation occurrence rate $\approx 27\%$)

Annual prec. maxima: Typical estimated $\xi \approx 0.10$ to 0.15 (Penultimate approximation gives $\xi_{100} \approx 0.11$)

Fitted GEV distribution (Sample size = 1000):

Obtained estimate of $\xi \approx 0.12$



Q-Q Plot: Stretched exponential simulation

- Heavy Tails / Chance mechanism
- -- Mixture of exponential distributions

Suppose X has exponential distribution with scale parameter σ^* :

$$\Pr\{X > x \mid \sigma^*\} = \exp[-(x/\sigma^*)], \ x > 0, \ \sigma^* > 0$$

Further assume that the rate parameter $v = 1/\sigma^*$ varies according to a gamma distribution with shape parameter α (unit scale), pdf:

$$f_{v}(v; \alpha) = \left[\Gamma(\alpha)\right]^{-1} v^{\alpha-1} \exp(-v), \ \alpha > 0$$

The unconditional distribution of Y is heavy-tailed:

$$\Pr\{X > x\} = (1 + x)^{-\alpha}$$

(i.e., exact GP distribution with shape parameter $\xi = 1/\alpha$)

-- Simulation experiment

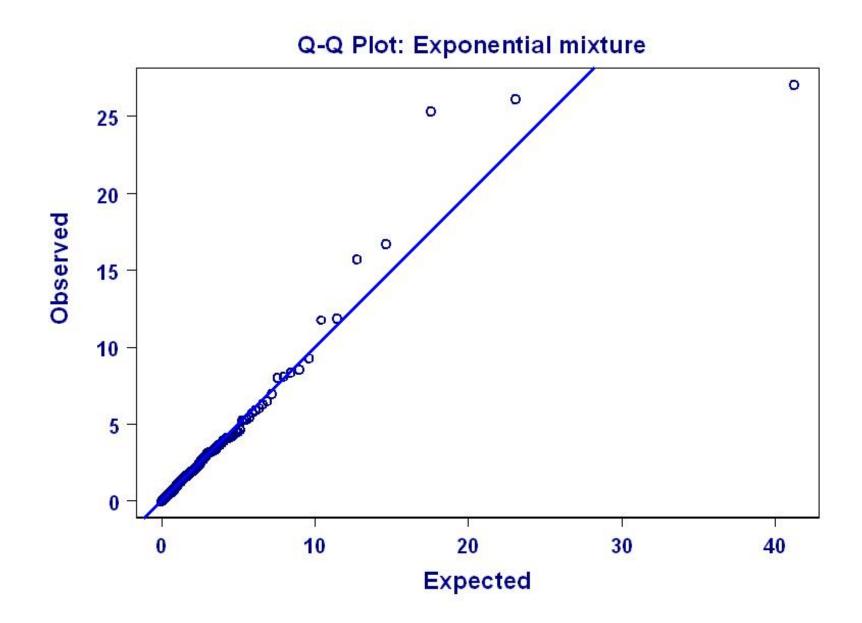
Induce heavy tail from conditional light tails

Let rate parameter of exponential distribution have gamma distribution with shape parameter $\alpha = 2$

Then unconditional (mixture) distribution is GP with shape parameter $\xi = 0.5$

Fit GP distribution to simulated exponential mixture (Sample size = 1000):

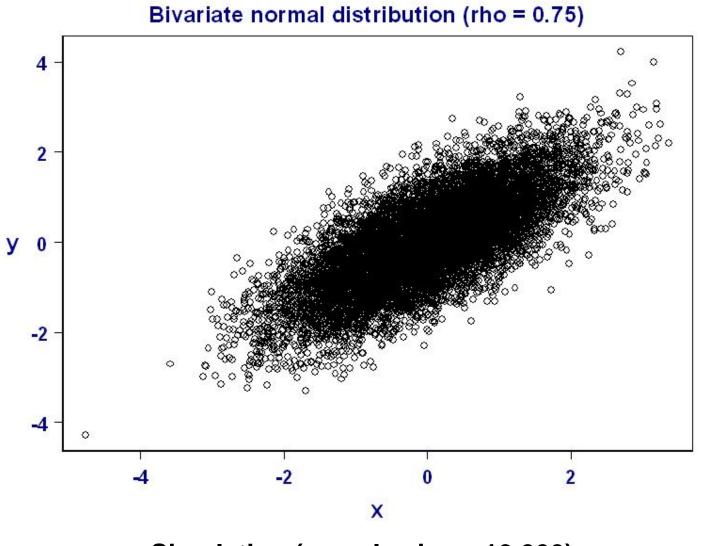
Obtained estimate of $\xi \approx 0.51$



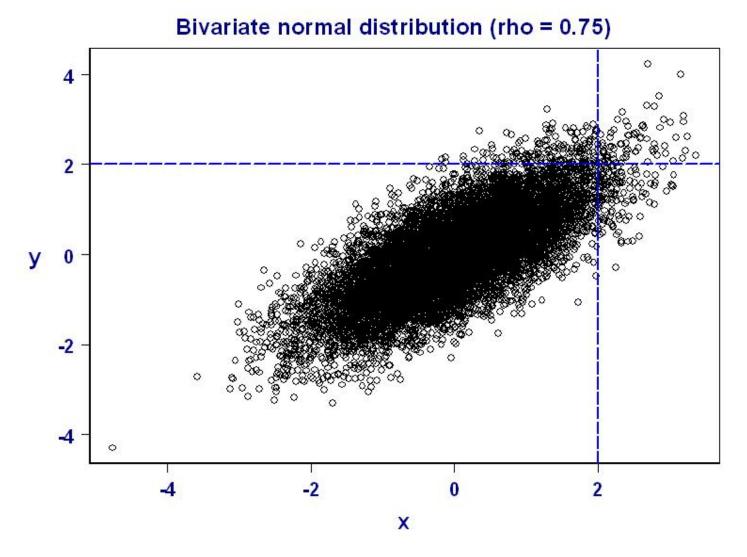
- As example, consider stationary Gaussian process
- -- Joint distribution of X_t and X_{t+k} is bivariate normal with autocorrelation coefficient ρ_k , k = 1, 2, ...
- -- So consider two random variables (*X*, *Y*) with bivariate normal distribution with correlation coefficient ρ , $|\rho| < 1$

No "clustering at high levels" (in asymptotic sense; i. e., extremal index $\theta = 1$):

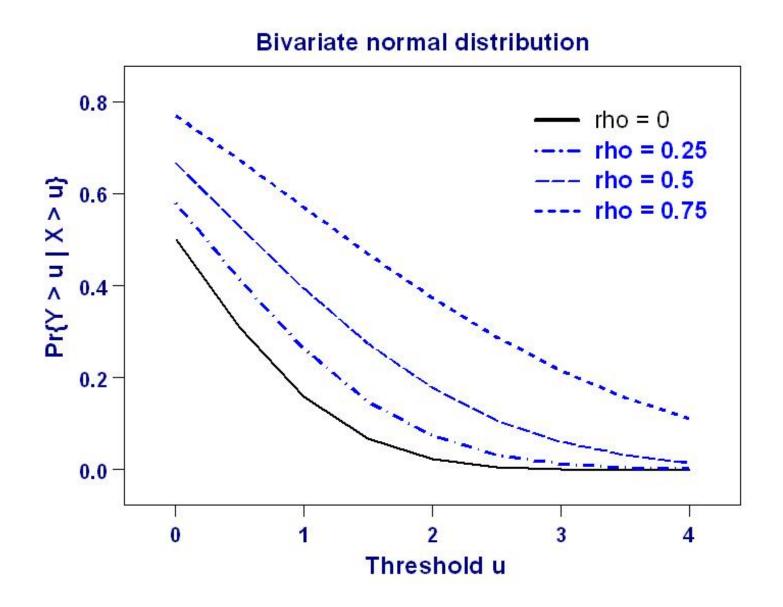
$$\Pr\{Y > u \mid X > u\} \to 0 \text{ as } u \to \infty$$



Simulation (sample size = 10,000)



Simulation (sample size = 10,000)



• Interpretation of extremal index θ , $0 < \theta \le 1$

(i) Mean cluster length $\approx 1/\theta$

(ii) Effective sample size

(as if take maximum of $n^* = n\theta$ "unclustered" observations)

Note: Does not resemble same concept based on time averages

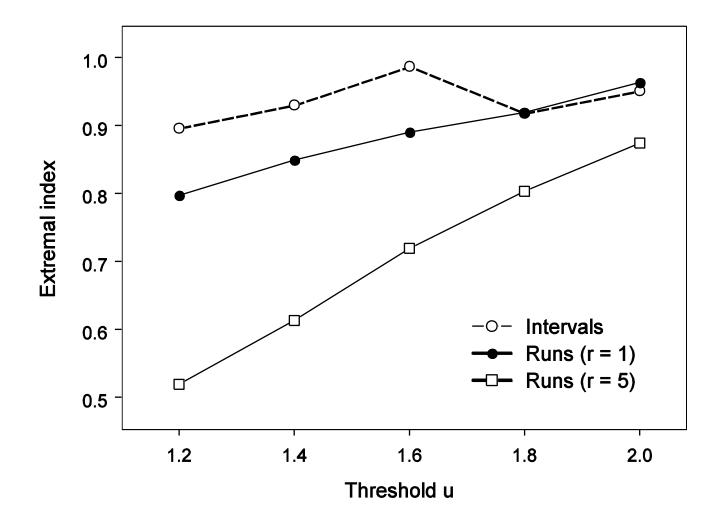
Effect of θ < 1 on GEV distribution:

Adjustment to location and scale parameters, μ and σ , but no adjustment to shape parameter ξ

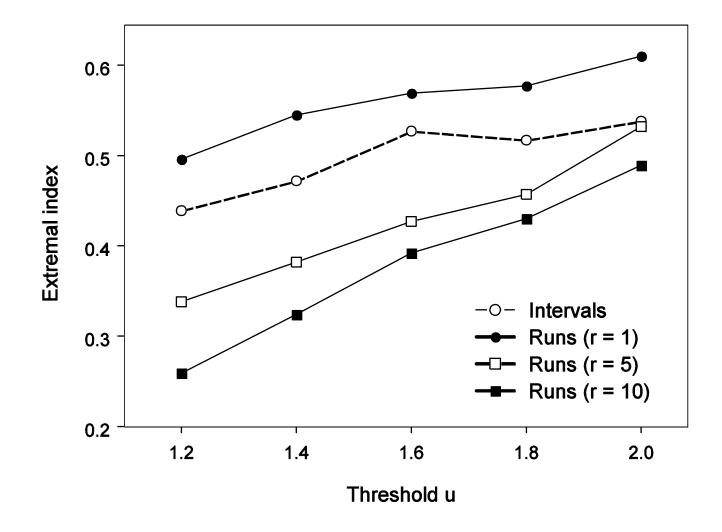
In block maxima approach, effect of $\theta < 1$ automatically subsumed in fitted parameters of GEV (could affect approximation accuracy)

- "Intervals estimator" of extremal index θ (Ferro-Segers 2003)
- -- "Interexceedance" times (i. e., time between exceedances)
 (i) If X_t > u & X_{t+1} > u, then interexceedance time = 1
 (ii) If X_t > u, X_{t+1} < u, X_{t+2} > u, then interexceedance time = 2, etc.
 Coefficient of variation (i. e., st. dev. / mean) of interexceedance times converges to function of θ as threshold u → ∞
 Does *not* require identification of clusters (could chose runs declustering parameter *r* so that mean cluster length ≈ 1/θ)
- -- Confidence interval for θ

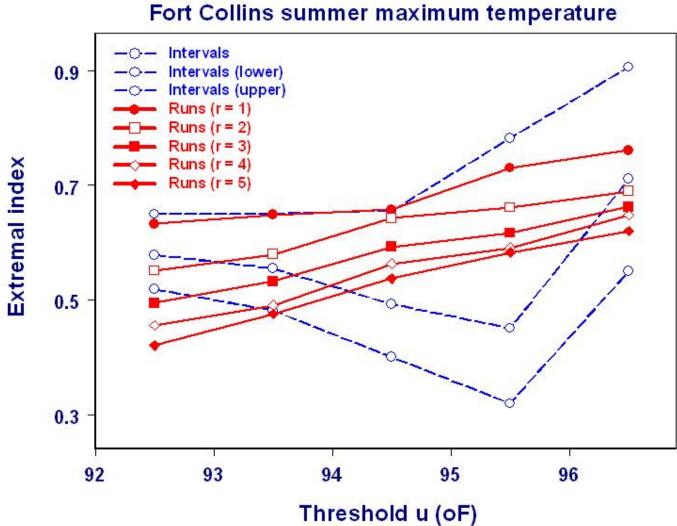
Resample interexceedance times (because of extremal dependence, need to modify conventional bootstrap)



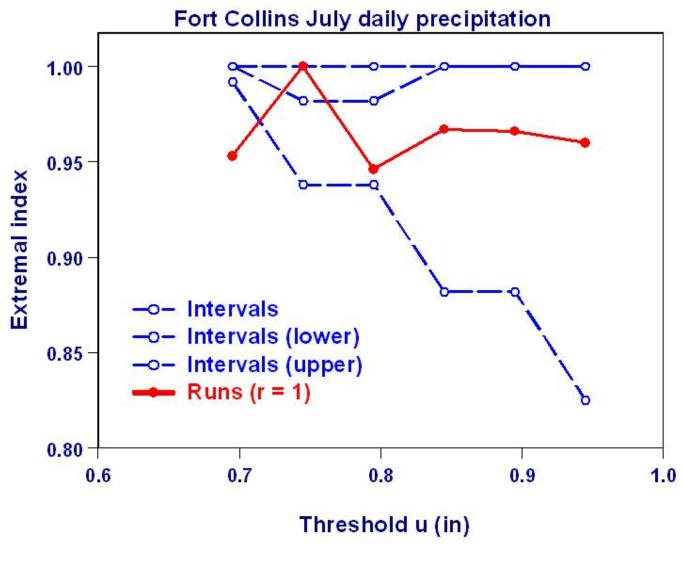
Gaussian first-order autoregressive process with $\rho_1 = 0.25$



Gaussian first-order autoregressive process with $\rho_1 = 0.75$

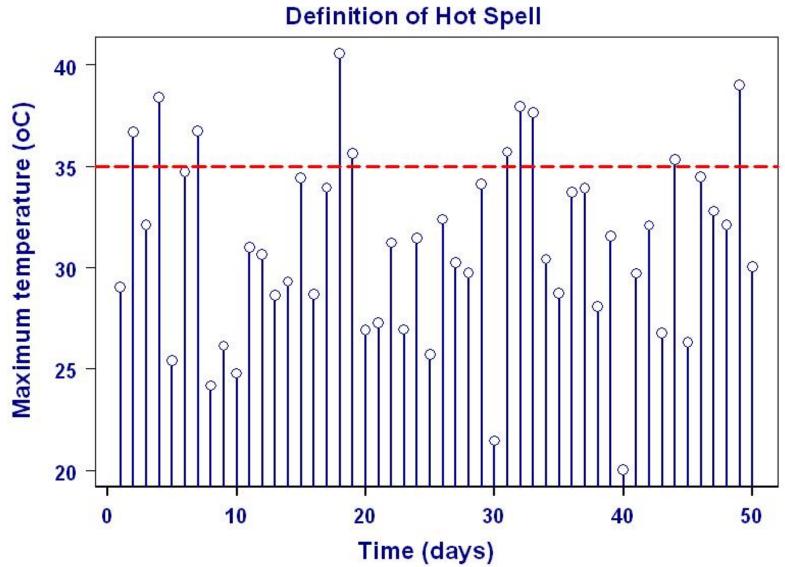


Evidence of clustering at high levels



Lack of evidence of clustering at high levels

- Heat waves
- -- Extreme weather phenomenon
- -- Lack of use of statistical methods based on extreme value theory
- -- Complex phenomenon / Ambiguous concept
- -- Focus on hot spells instead (Derive more full-fledged heat waves from model for hot spells)
- -- Devise simple model (only use univariate extreme value theory)
- -- Simple enough to incorporate trends (or other covariates)



- Start with point process (or Poisson-GP) model
- Rate of occurrence of clusters
 Modeled as Poisson process (rate parameter λ)
- -- Intensity of cluster

Cluster maxima modeled as GP distribution (shape parameter ξ , scale parameter σ^*)

- Retain clusters ("hot spells"), rather than declustering
- -- Model cluster statistics

(i) Duration (e. g., geometric distribution with mean $1/\theta$)

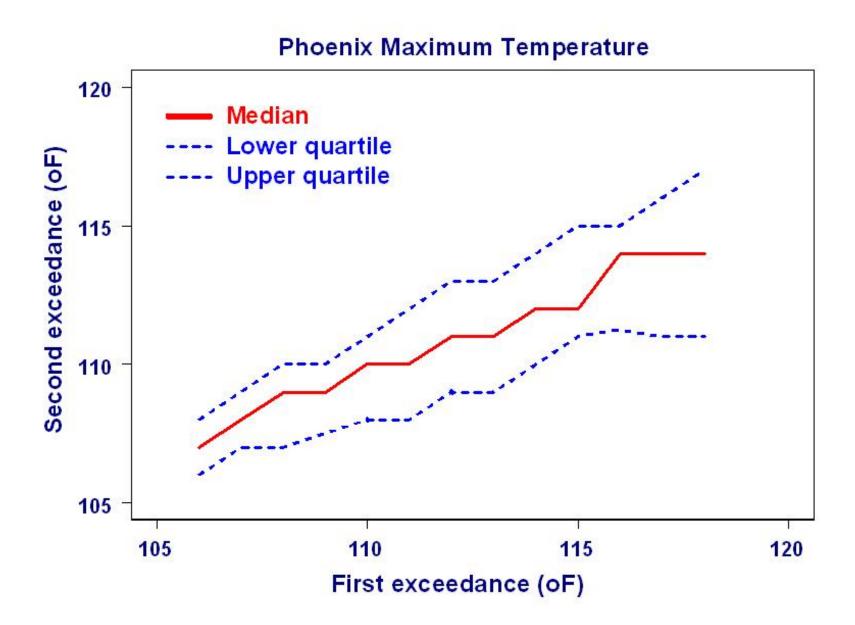
(ii) Dependence of excesses within cluster (conditional GP model)

- Model for excesses with cluster (runs parmeter *r* = 1)
- Let Y₁, Y₂, ..., Y_k denote excesses over threshold within given cluster / spell (assume of length k > 1)
 (i) Model first excess Y₁ as unconditional GP distribution (instead of cluster maxima)
 - (ii) Model conditional distribution of Y_2 given Y_1 as GP with scale parameter depending on Y_1 ; e. g., with linear link function

$$\sigma^*(y) = \sigma_0^* + \sigma_1^* y$$
, given $Y_1 = y$

Similar model for conditional distribution of Y_3 given Y_2 (etc.)

Requires only univariate extreme value theory (not multivariate)



• Conditional distribution of Y_2 given $Y_1 = y$

-- Conditional mean [increases with $\sigma^*(y)$]

$$E(Y_2 | Y_1 = y) = \sigma^*(y) / (1 - \xi), \xi < 1$$

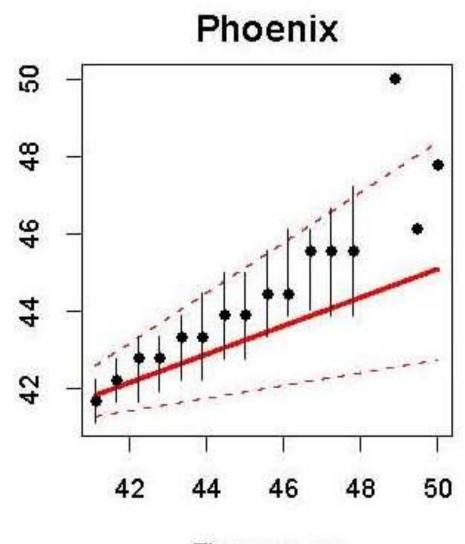
-- Conditional variance (increases with mean)

Var(
$$Y_2 | Y_1 = y$$
) = [E($Y_2 | Y_1 = y$)]² / (1 - 2 ξ), $\xi < 1/2$

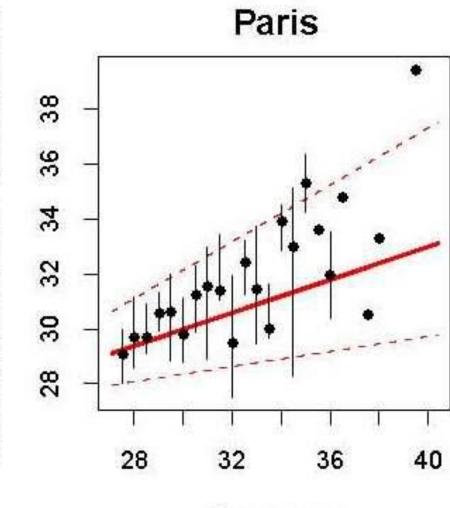
-- Conditional quantile function

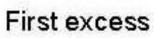
$$F^{-1}[p; \sigma^{*}(y), \xi] = [\sigma^{*}(y) / \xi] [(1 - p)^{-\xi} - 1], 0$$

Increases more rapidly with $\sigma^*(y)$ for higher p



First excess





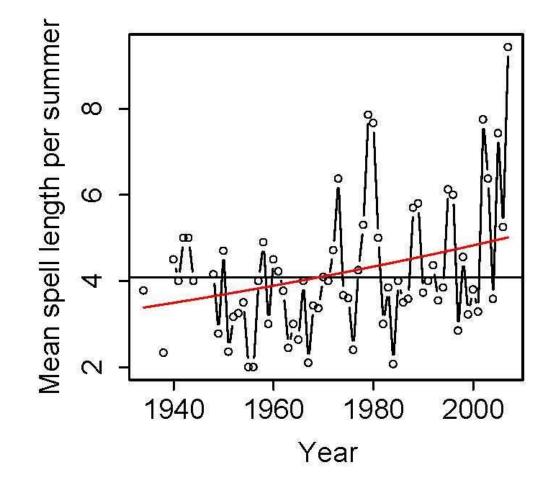
- Introduction of trends
- -- Cluster rate

Trend in mean of Poisson rate parameter $\lambda(s)$, year s

-- Cluster length

Trend in mean of geometric distribution $1/\theta(s)$, year s

- -- Cluster maxima (or first excess) Trend in scale parameter of GP distribution $\sigma^*(s)$, year s
- -- Other covariates such as index of atmospheric blocking



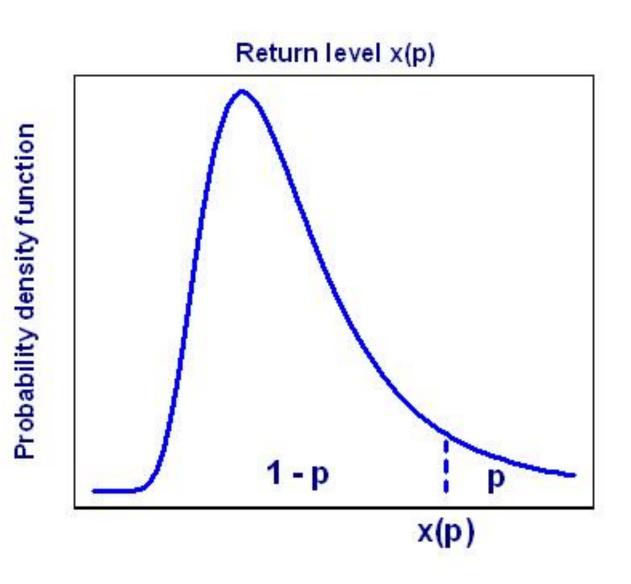
Phoenix (GLM with log link, *P*-value \approx 0.01)

- Interpretation of return level x(p) (under stationarity)
- -- Stationarity implies identical distributions (not necessarily independence)
- (i) Expected waiting time (under temporal independence) Waiting time *W* has geometric distribution:

$$\Pr\{W = k\} = (1 - p)^{k-1}p, \ k = 1, 2, \dots, E(W) = 1/p$$

(ii) Length of time T_p for which expected number of events = 1

1 = Expected no. events =
$$T_p p$$
, so $T_p = 1/p$



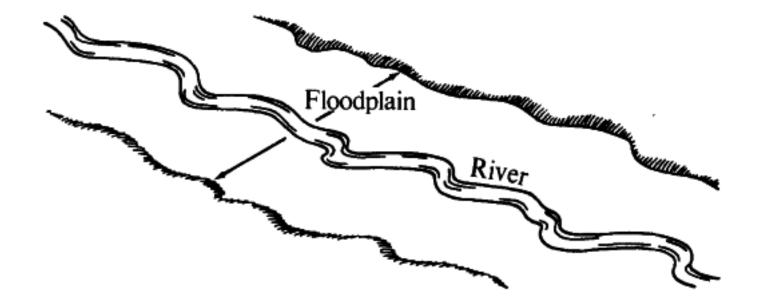
- Options
- -- Retain one of these two interpretations

Not clear which one is preferable:

Property (ii) is easier to work with (like average probability)

Property (i) may be more meaningful for risk analysis

-- Switch to "effective" return period and "effective" return level (i. e., quantiles varying over time)



Moving flood plain from year-to-year (not necessarily feasible?)

- Alternative concept
- -- Extreme event $X_t > u$
- -- Choose threshold *u* to achieve desired value of Pr{One or more events over time interval of length *T*}
- -- Under stationarity (and temporal independence)

As an example, if p = 0.01 (i. e., 100-yr return level):

Pr{one or more events over 30 yrs} = $1 - (0.99)^{30} \approx 0.26$

Pr{one or more events over 100 yrs} = $1 - (0.99)^{100} \approx 0.63$