EVA Tutorial #3

ISSUES ARISING IN EXTREME VALUE ANALYSIS

Rick Katz

Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA

email: rwk@ucar.edu

Home page: www.isse.ucar.edu/staff/katz/

Lecture: www.isse.ucar.edu/extremevalues/docs/eva3.pdf

- **(1) Penultimate Approximations**
- **(2) Origin of Bounded and Heavy Tails**
- **(3) Clustering at High Levels**
- **(4) Complex Extreme Events**
- **(5) Risk Communication under Stationarity**
- **(6) Risk Communication under Nonstationarity**
- **"Ultimate" Extreme Value Theory**
- **-- GEV distribution as limiting distribution of maxima**

 X_1, X_2, \ldots, X_n independent with common cdf *F*

$$
M_n = \max\{X_1, X_2, \ldots, X_n\}
$$

- **Penultimate Extreme Value Theory**
- **-- Suppose** *F* **in domain of attraction of Gumbel type (i. e., ξ = 0)**
- **-- Still preferable in nearly all cases to use GEV as approximate distribution for maxima (i. e., act as if ξ ≠ 0)**

-- Expression (as function of block size *n***) for shape parameter ξ***ⁿ*

"Hazard rate" (or "failure rate"):

$$
H_F(x) = F'(x) / [1 - F(x)]
$$

Instantaneous rate of "failure" given "survived" until *x*

Alternative expression: $H_F(x) = -[\ln(1 - F)]'(x)$

One choice of shape parameter (block size *n***):**

$$
\xi_n = (1/H_F)'(x) |_{x=u(n)}
$$

Here *u***(***n***) is "characteristic largest value"**

$$
u(n) = F^{-1}(1 - 1/n)
$$

[or (1 − 1/*n***)th quantile of** *F* **]**

-- Because *F* **assumed in domain of attraction of Gumbel,**

 $\xi_n \to 0$ as block size $n \to \infty$

-- More generally, can use behavior of $H_F(x)$ for large x to determine **domain of attraction of** *F*

In particular, if

 $(1/H_F)'(x) \rightarrow 0$ as $x \rightarrow \infty$

then *F* **is in domain of attraction of Gumbel**

*Note***: Straightforward to show that hazard rate of lognormal distribution satisfies above condition (i. e., in domain of attraction of Gumbel)**

*Example***: Exponential Distribution**

-- Exact exponential upper tail (unit scale parameter)

$$
1 - F(x) = \exp(-x), \quad x > 0
$$

-- Penultimate approximation

Hazard rate: $H_F(x) = 1$, $x > 0$

(Constant hazard rate consistent with memoryless property)

Shape parameter: $ξ_n = 0$

So *no* **benefit to penultimate approximation**

- *Example***: Normal Distribution (with zero mean & unit variance)**
- **-- Fisher & Tippett (1928) proposed Weibull type of GEV as penultimate approximation**

Hazard rate: $H_{\Phi}(\mathbf{x}) \approx \mathbf{x}$, for large \mathbf{x}

[Recall that 1 – $\Phi(x) \approx \phi(x) / x$ **]**

Characteristic largest value: $u(n) \approx (2 \ln n)^{1/2}$, for large *n*

Penultimate approximation is Weibull type with

ξ*ⁿ* **≈ − 1 / (2 ln** *n* **)**

For example: ξ¹⁰⁰ ≈ −0.11, ξ³⁶⁵ ≈ −0.085

- *Example***: "Stretched Exponential" Distribution**
- **-- Traditional form of Weibull distribution (Bounded below)**

$$
1 - F(x) = \exp(-x^c), \ \ x > 0, \ \ c > 0
$$

where *c* **is shape parameter (unit scale parameter)**

Hazard rate: $H_F(x) = c x^{c-1}, x > 0$

Characteristic largest value: *u***(***n***) = (ln** *n***) 1/***c*

Penultimate approximation has shape parameter

 $ξ_n ≈ (1 – c) / (c ln n)$

(i) $c > 1$ implies $\xi_n \uparrow 0$ as $n \rightarrow \infty$ (i. e., Weibull type) **(ii)** $c < 1$ implies $\xi_n \downarrow 0$ as $n \rightarrow \infty$ (i. e., Fréchet type)

- **Upper Bounds / Penultimate approximation**
- **-- Weibull type of GEV (i. e., ξ < 0)**

For instance, provides better approximation than Gumbel type when "parent" distribution *F***:**

- **(i) Normal (e. g., for temperature)**
- **(ii) Stretched exponential with** *c* **> 1 (e. g., for wind speed)**
- **-- Apparent upper bound**

Complicates interpretation (e. g., "thermostat hypothesis" or maximum intensity of hurricanes)

- **Heavy tails / Penultimate approximation**
- **-- Fréchet type of GEV (i. e., ξ > 0)**

For instance, provides better approximation than Gumbel when parent distribution *F***:**

Stretched exponential distribution with *c* **< 1**

-- Possible explanation for apparent heavy tail of precipitation Wilson & Toumi (2005):

Based on physical argument, proposed stretched exponential with *c* **= 2/3 (Universal value, independent of season or location) as distribution for heavy precipitation**

-- Simulation experiment

Generated observations from stretched exponential distribution with shape parameter *c* **= 2/3**

Determine maximum of sequence of length $n = 100$, $M₁₀₀$ **(Annual maxima: Daily precipitation occurrence rate ≈ 27%)**

Annual prec. maxima: Typical estimated ξ ≈ 0.10 to 0.15 (Penultimate approximation gives ξ¹⁰⁰ ≈ 0.11)

Fitted GEV distribution (Sample size = 1000):

Obtained estimate of ξ ≈ 0.12

Q-Q Plot: Stretched exponential simulation

- **Heavy Tails / Chance mechanism**
- **-- Mixture of exponential distributions**

Suppose *X* **has exponential distribution with scale parameter σ*:**

$$
Pr{X > x | \sigma^*} = exp[-(x/\sigma^*)], x > 0, \sigma^* > 0
$$

Further assume that the rate parameter *ν* **= 1/σ* varies according to a gamma distribution with shape parameter α (unit scale), pdf:**

$$
f_V(v; \alpha) = \left[\Gamma(\alpha)\right]^{-1} v^{\alpha-1} \exp(-v), \ \alpha > 0
$$

The unconditional distribution of *Y* **is heavy-tailed:**

$$
\Pr\{X > x\} = (1 + x)^{-\alpha}
$$

(i.e., exact GP distribution with shape parameter ξ = 1/α)

-- Simulation experiment

Induce heavy tail from conditional light tails

Let rate parameter of exponential distribution have gamma distribution with shape parameter $α = 2$

Then unconditional (mixture) distribution is GP with shape parameter $ξ = 0.5$

Fit GP distribution to simulated exponential mixture (Sample size = 1000):

Obtained estimate of ξ ≈ 0.51

- **As example, consider stationary Gaussian process**
- **--** Joint distribution of X_t and X_{t+k} is bivariate normal with **autocorrelation coefficient** ρ_k **,** $k = 1, 2, \ldots$
- **-- So consider two random variables (***X***,** *Y***) with bivariate normal distribution with correlation coefficient ρ, |ρ| < 1**

No "clustering at high levels" (in asymptotic sense; i. e., extremal $index θ = 1$:

$$
\Pr\{Y > u \mid X > u\} \rightarrow 0 \text{ as } u \rightarrow \infty
$$

Simulation (sample size = 10,000)

Simulation (sample size = 10,000)

Interpretation of extremal index θ, 0 < θ ≤ 1

(i) Mean cluster length ≈ 1/θ

(ii) Effective sample size

(as if take maximum of $n^* = n\theta$ **"unclustered" observations)**

*Note***: Does not resemble same concept based on time averages**

Effect of θ < 1 on GEV distribution:

Adjustment to location and scale parameters, μ and σ, but no adjustment to shape parameter ξ

In block maxima approach, effect of θ < 1 automatically subsumed in fitted parameters of GEV (could affect approximation accuracy)

- **"Intervals estimator" of extremal index θ (Ferro-Segers 2003)**
- **-- "Interexceedance" times (i. e., time between exceedances)** (i) If $X_t > u \& X_{t+1} > u$, then interexceedance time = 1 (ii) If $X_t > u$, $X_{t+1} < u$, $X_{t+2} > u$, then interexceedance time = 2, etc. **Coefficient of variation (i. e., st. dev. / mean) of interexceedance times converges to function of** θ **as threshold** $u \rightarrow \infty$ **Does** *not* **require identification of clusters (could chose runs declustering parameter** *r* **so that mean cluster length ≈ 1/θ)**
- **-- Confidence interval for θ**

Resample interexceedance times (because of extremal dependence, need to modify conventional bootstrap)

Gaussian first-order autoregressive process with $p_1 = 0.25$

Gaussian first-order autoregressive process with $p_1 = 0.75$

Fort Collins summer maximum temperature

Evidence of clustering at high levels

Lack of evidence of clustering at high levels

- **Heat waves**
- **-- Extreme weather phenomenon**
- **-- Lack of use of statistical methods based on extreme value theory**
- **-- Complex phenomenon / Ambiguous concept**
- **-- Focus on hot spells instead (Derive more full-fledged heat waves from model for hot spells)**
- **-- Devise simple model (only use univariate extreme value theory)**
- **-- Simple enough to incorporate trends (or other covariates)**

- **Start with point process (or Poisson-GP) model**
- **-- Rate of occurrence of clusters Modeled as Poisson process (rate parameter λ)**
- **-- Intensity of cluster**

Cluster maxima modeled as GP distribution (shape parameter ξ, scale parameter σ*)

- **Retain clusters ("hot spells"), rather than declustering**
- **-- Model cluster statistics**

(i) Duration (e. g., geometric distribution with mean 1/θ)

(ii) Dependence of excesses within cluster (conditional GP model)

- **Model for excesses with cluster (runs parmeter** *r* **= 1)**
- **-- Let** *Y***1,** *Y***2, . . .,** *Y^k* **denote excesses over threshold within given cluster / spell (assume of length** *k* **> 1) (i) Model first excess***Y***¹ as unconditional GP distribution (instead of cluster maxima)**

(ii) Model conditional distribution of Y_2 given Y_1 as GP with scale **parameter depending on** *Y***1; e. g., with linear link function**

 $\sigma^*(y) = \sigma_0^* + \sigma_1^* y$, given $Y_1 = y$

Similar model for conditional distribution of *Y***³ given** *Y***² (etc.)**

Requires only univariate extreme value theory (not multivariate)

• Conditional distribution of Y_2 given $Y_1 = y$

-- Conditional mean [increases with σ*(*y***)]**

$$
E(Y_2 | Y_1 = y) = \sigma^*(y) / (1 - \xi), \xi < 1
$$

-- Conditional variance (increases with mean)

Var(
$$
Y_2 | Y_1 = y
$$
) = [E($Y_2 | Y_1 = y$)]² / (1 – 2 ξ), ξ < 1/2

-- Conditional quantile function

$$
F^{-1}[p; \sigma^*(y), \xi] = [\sigma^*(y) / \xi] [(1-p)^{-\xi} - 1], \ 0 < p < 1
$$

Increases more rapidly with σ*(*y***) for higher** *p*

First excess

- **Introduction of trends**
- **-- Cluster rate**

Trend in mean of Poisson rate parameter λ(*s***), year** *s*

-- Cluster length

Trend in mean of geometric distribution 1/θ(*s***), year** *s*

- **-- Cluster maxima (or first excess) Trend in scale parameter of GP distribution σ*(***s***), year** *s*
- **-- Other covariates such as index of atmospheric blocking**

Phoenix (GLM with log link, P -value ≈ 0.01)

- **Interpretation of return level** *x***(***p***) (under stationarity)**
- **-- Stationarity implies identical distributions (not necessarily independence)**
- **(i) Expected waiting time (under temporal independence) Waiting time** *W* **has geometric distribution:**

$$
Pr{W = k} = (1 - p)^{k-1}p, k = 1, 2, ..., E(W) = 1/p
$$

(ii) Length of time T_p for which expected number of events = 1

1 = Expected no. events =
$$
T_p p
$$
, so $T_p = 1/p$

- **Options**
- **-- Retain one of these two interpretations**

Not clear which one is preferable:

Property (ii) is easier to work with (like average probability)

Property (i) may be more meaningful for risk analysis

-- Switch to "effective" return period and "effective" return level (i. e., quantiles varying over time)

Moving flood plain from year-to-year (not necessarily feasible?)

- **Alternative concept**
- **-- Extreme event** $X_t > u$
- **-- Choose threshold** *u* **to achieve desired value of Pr{One or more events over time interval of length** *T***}**
- **-- Under stationarity (and temporal independence)**

As an example, if *p* **= 0.01 (i. e., 100-yr return level):**

Pr{one or more events over 30 yrs} = 1 – $(0.99)^{30} \approx 0.26$

Pr{one or more events over 100 yrs} = 1 – $(0.99)^{100} \approx 0.63$