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[1] Stochastic weather generators are commonly used to generate scenarios of climate
variability or change on a daily timescale. So the realistic modeling of extreme events is
essential. Presently, parametric weather generators do not produce a heavy enough
upper tail for the distribution of daily precipitation amount, whereas those based on
resampling have inherent limitations in representing extremes. Regarding this issue, we
first describe advanced statistical tools from ultimate and penultimate extreme value
theory to analyze and model extremal behavior of precipitation intensity (i.e., nonzero
amount), which, although interesting in their own right, are mainly used to motivate
approaches to improve the treatment of extremes within a weather generator framework.
To this end we propose and discuss several possible approaches, none of which resolves
the problem at hand completely, but at least one of them (i.e., a hybrid technique
with a gamma distribution for low to moderate intensities and a generalized Pareto
distribution for high intensities) can lead to a substantial improvement. An alternative
approach, based on fitting the stretched exponential (or Weibull) distribution to either all
or only high intensities, is found difficult to implement in practice.
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1. Introduction

[2] Stochastic weather generators are commonly relied on
to simulate daily time series of weather, including elements
such as minimum and maximum temperature and precipi-
tation amount [Richardson, 1981; Wilks and Wilby, 1999].
Such simulations are sometimes intended to reflect solely
natural variations under the present climate or, alternatively,
to be consistent with large-scale global change [Katz, 1996;
Wilks, 1992]. These simulations are typically used as inputs
in assessments of the societal impacts of variations in
weather and climate, for example in statistical downscaling
of the output from a general circulation model, see the study
by Wilby et al. [1998] for more details and approaches.
Therefore the realistic modeling of the frequency and
severity of extreme weather events (e.g., hot or cold spells
or high precipitation amounts) is essential.
[3] There are several types of stochastic weather gener-

ator, including parametric [e.g., Richardson, 1981] and
resampling [e.g., Rajagopalan and Lall, 1999] approaches.
The parametric approach involves a formal stochastic model
for daily time series of weather variables, with parametric
probability distributions, such as the normal for temperature
and the gamma for precipitation ‘‘intensity’’ (i.e., nonzero
amount). The resampling approach imposes fewer con-
straints about the structure of the time series of weather

variables, especially no parametric assumptions about their
distributions. Although both these types of weather gener-
ator perform reasonably well in terms of reproducing
average characteristics of variables, neither necessarily
performs particularly well in terms of simulating extremes,
especially high precipitation amounts [Sharif and Burn,
2006; Wilks, 1999].
[4] Extensive efforts have been devoted, particularly

within the hydrology community, to statistically modeling
high precipitation amount, with much evidence of its
distribution being heavy-tailed [e.g., Koutsoyiannis, 2004].
Ideally, stochastic weather generators ought to model pre-
cipitation extremes in a manner consistent with this infor-
mation. Yet achieving a unified treatment can be difficult in
practice. One advantage of stochastic weather generators is
their relatively simple structure, making feasible modeling
multiple variables, incorporating annual cycles, and intro-
ducing covariates, such as the El Niño-Southern Oscillation
(ENSO) phenomenon [Furrer and Katz, 2007]. So it would
be desirable to retain this simplicity in improving the
performance of weather generators in simulating extremes.
[5] In the present paper, we focus on the parametric type

of stochastic weather generator, in attempting to improve
the simulation of high precipitation amounts. Because of its
convenience for implementing such improvements, the
generalized linear modeling (GLM) framework for stochastic
weather generators, introduced by Furrer and Katz [2007], is
used (see www.image.ucar.edu/�eva/GLMwgen/). Previous
attempts at improvements have tended to be ad hoc, for the
most part lacking any theoretical justification. Instead, we
rely on the statistical theory of extreme values [Coles, 2001]
to guide our choice of improvements. Various subtleties in
this theory, especially so-called ‘‘penultimate’’ approxima-
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tions, are exploited (see chapter 3 of Embrechts et al. [1997]
and chapter 6 of Reiss and Thomas [2007]).
[6] Two sets of time series of daily weather are modeled,

one for Fort Collins, CO for which precipitation extremes
were previously analyzed by Katz et al. [2002] and another
for Pergamino, Argentina for which minimum and maxi-
mum temperature and precipitation amount were previously
analyzed by Furrer and Katz [2007]. First, some back-
ground on stochastic weather generators is provided, cov-
ering both parametric and resampling approaches, including
previous attempts to improve the simulation of precipitation
extremes (section 2). Then the modern point process
approach in extreme value theory is applied to daily
precipitation extremes, allowing for annual cycles and other
covariates such as ENSO, as well as another distribution for
high intensity, the ‘‘stretched exponential’’ (or Weibull),
justified on the basis of a penultimate approximation
(section 3). Next several approaches to improve the simu-
lation of high precipitation amounts are considered, includ-
ing a ‘‘hybrid’’ distribution for intensity consisting of the
gamma for low to moderate values but a generalized Pareto
(GP) for high values (section 4). Finally, the discussion
emphasizes the remaining limitations in the various pro-
posed approaches, particularly the difficulty in achieving
parsimony (section 5).

2. Stochastic Weather Generators

2.1. Parametric Models

[7] We briefly describe the basic form of parametric
stochastic weather generators, sometimes termed the
Richardson model [Richardson, 1981]. To make wet and
dry spells persist, the daily time series of precipitation
occurrence is modeled with a first- or higher-order, two-
state Markov chain. Given the occurrence sequence, pre-
cipitation intensities are assumed conditionally independent

and identically distributed (iid). The other weather elements
(e.g., minimum and maximum temperature) are linked to
precipitation occurrence by shifting their conditional means
and, possibly, conditional standard deviations depending on
whether or not precipitation occurs. Dependence between
these remaining weather elements, after adjustment for the
shifts in mean and standard deviation with precipitation
occurrence, is modeled as a first-order multivariate autore-
gressive process.
[8] Here our attention is focused primarily on how the

distribution of daily precipitation intensity is modeled. If we
let Xt denote the precipitation amount on the tth day, then
the cumulative distribution function of intensity can be
expressed as

FðxÞ ¼ PrfXt � xjXt > 0g; x > 0: ð1Þ

In parametric generators, it is common to assume that this
distribution is the gamma; that is, with probability density
function given by

f ðx;a;sÞ ¼ 1

sGðaÞ
x

s

� �a	1

exp 	 x

s

� �
; x > 0;a > 0;s > 0: ð2Þ

Here a denotes the shape parameter and s the scale
parameter. For example, Furrer and Katz [2007] used the
gamma distribution, with a seasonal cycle in the logarithm
of its scale parameter [i.e., ln(s)], as well as possible
dependence on ENSO, in an application of their GLM
approach to daily weather at Pergamino.
[9] Figure 1 shows a quantile-quantile (Q-Q) plot for the

fit of the gamma distribution, with parameters estimated by
maximum likelihood, to daily precipitation intensity at Fort
Collins only during the single month of July, 1900–1999
(see the study by Katz et al. [2002] for more information
about this data set). This month falls within the time of the
year during which floods are most likely in this region.
Despite indicating an acceptable fit for low to moderate
values of precipitation intensity (i.e., the overwhelming
majority of the observations), the fit for higher values is
rather poor. The upper tail of the gamma distribution is not
heavy enough, underestimating the likelihood of high
precipitation intensity to a considerable extent. As will be
seen later, the distribution of intensity is not nearly as
heavy-tailed at Pergamino as at Fort Collins.
[10] Because the other variables in the Richardson type of

weather generator only depend on precipitation through its
occurrence, it would be straightforward to implement any
changes in how intensity is modeled. Proposed improve-
ments to fitting the distribution of precipitation intensity in
weather generators have included substituting another para-
metric distribution for the gamma, such as a mixture of two
exponential distributions [Johnson et al., 1996; Wilks,
1999]. Originally proposed by Smith and Schreiber [1974]
as a statistical model for intensity, a mixture of two
exponential distributions has a probability density function
of the form

f x;w;s1;s2ð Þ ¼ 1	 wð Þ 1

s1

exp 	 x

s1

� �
þ w

1

s2

exp 	 x

s2

� �
;

x > 0; 0 < w < 1;s1 > 0; s2 > 0; ð3Þ

Figure 1. Q-Q plot of observed versus modeled gamma
quantiles of precipitation intensity in July at Fort Collins.
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where w denotes the mixing weight and s1 and s2 the two
scale parameters. This type of mixture distribution does tend
to result in a heavier tail than the gamma when fit to
intensity, but still not necessarily heavy enough [Wilks,
1999].
[11] Alternatively, the use of a parametric form can be

relaxed and the distribution of intensity fit by nonparametric
techniques, such as kernel density smoothing. For example,
Semenov [2008] used a simple binning technique. While
this technique does result in acceptable performance in
simulating extremes consistent with observations [Semenov,
2008], it has the serious limitation of not being capable of
simulating extremes more than negligibly higher than those
observed. Further, it would no longer be straightforward to
incorporate covariates into the weather generator (e.g.,
seasonal cycles in intensity or dependence on ENSO).
[12] In the stochastic modeling of precipitation, but

outside the realm of weather generators, several proposals
for improvements in the treatment of extremes have
appeared in recent years. In a conceptual stochastic model
of rainfall, Cameron et al. [2001] used the generalized
Pareto (GP), instead of the exponential, for the distribution
of high intensities from a rain cell. The cumulative distri-
bution function of the GP is given by

F x; x;s; uð Þ ¼ 1	 1þ x
x	 u

s

h i	1=x
;

x > u; 1þ x
x	 u

s
> 0;s > 0: ð4Þ

Here x denotes the shape parameter, where positive x
implies a heavy tail, negative x a bounded tail and the
limiting case of x ! 0 a light tail (i.e., the exponential
distribution), s the scale parameter, and u the threshold for
high intensity. Such an approach has a firm basis in extreme
value theory [e.g., Coles, 2001], which implies that the
upper tail of essentially any distribution must be approxi-
mately GP for sufficiently high u.
[13] Making use of a heuristic physical argument, Wilson

and Toumi [2005] argued that the distribution of high
precipitation intensity ought to be approximately of the
stretched exponential (or Weibull) form. Its cumulative
distribution function is given by

F x; c;s; uð Þ ¼ 1	 exp 	 x	 u

s

� �ch i
; x > u; c > 0;s > 0; ð5Þ

where c denotes the shape parameter, s the scale parameter
and u a threshold. This distribution can possess an apparent
heavy tail, as formally established through a penultimate
approximation in extreme value theory (see section 3). It is
appealing for stochastic weather generators because it can
be used within a GLM framework (chapter 13 of
McCullagh and Nelder [1989]), which, for example, is
not possible for the GP distribution.
[14] To avoid choosing a threshold for high intensity,

Vrac and Naveau [2007] used a dynamic mixture with
gamma and GP components. Unlike an ordinary mixture,
the dynamic mixture is designed to weight the gamma more
for low-intensity values, the GP more for high values. One
drawback to this approach is that it requires the estimation
of an unusually high number of parameters, at least six in
practice.

2.2. Resampling Approach

[15] The resampling approach to stochastic weather gen-
eration involves drawing from the original observations
with replacement, termed the ‘‘bootstrap’’ in statistics
[Efron and Tibshirani, 1993]. In practice, the resampling
scheme may be rather complicated, with the resampled
objects being vectors of weather observations (e.g., daily
minimum and maximum temperature and precipitation
amount) and the resampling being restricted to nearest
neighbors to preserve temporal dependence [Rajagopalan
and Lall, 1999]. Several limitations, especially with respect
to extremes, are inherent to any resampling scheme. Since
only observed values can be resampled, in particular, no
value in between the second highest value and the highest
value is possible, etc. Moreover, a precipitation intensity
higher than the maximum observed value can never be
generated. These limitations of the resampling approach
have been previously recognized [e.g., Rajagopalan and
Lall, 1999]. Some sort of smoothed bootstrap would rectify
the issue of not being possible to generate values between
those observed. For example, Sharif and Burn [2006]
introduced smoothness through perturbing the output of
the resampling algorithm by adding a noise term. However,
it is not clear how to modify the resampling approach to
generate values higher than the observed maximum, other
than in an ad hoc fashion.

3. Upper Tail Modeling

[16] In principle we are interested in the simulation from
the entire distribution of precipitation intensity, which
traditionally is deficient for high intensities. Our goal being
to improve on the simulation of these high intensities, it is
crucial to first understand the upper tail behavior alone in
order be able to make plausible proposals for improvement.
The statistical modeling of high precipitation intensity is
naturally linked to extreme value theory, which focuses on
the behavior and the modeling of the upper tails of distri-
butions. In section 4 we will show how to use the obtained
results for extremes in a unified modeling of the distribution
of precipitation intensity.

3.1. Extreme Value Analysis

[17] We begin this section by explaining briefly how to
characterize extreme value behavior using a two-dimensional
point process approach, see the work of Smith [1989],
chapter 5 in the book by Leadbetter et al. [1983], and
chapter 7 in the book by Coles [2001] for more details. One
of the advantages of this representation is its unification of
the more traditional block maxima (generalized extreme
value distribution, GEV) and peaks-over-threshold (POT,
GP distribution) approaches. It uses the GEV parameteriza-
tion given by the cumulative distribution function

F x; x; s*;mð Þ ¼ exp 	 1þ x
x	 m
s*

h i	1=x
� �

; 1þ x
x	 m
s*

> 0;

ð6Þ

with location parameter 	1 < m <1, scale parameter s* >
0 and shape parameter x having the same interpretation as
for the GP (with the limiting case of x ! 0 being the
Gumbel distribution). The scale parameters of the GEV and
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GP parameterizations, s* and s respectively, are related
through s = s* + x(u 	 m). The point process approach is
formulated in terms of the GEV parameters, which have the
advantage of not depending on a threshold, while not
reducing the data to block maxima and while including the
threshold exceedance rate in the inference. As a conse-
quence, non-stationarity can be easily and naturally
introduced through covariate effects in the parameters and,
theoretically, there is no difficulty in working with time-
varying thresholds.
[18] For the modeling of extreme values, a Poisson

process is a natural model in a limiting sense, as seen in
the following. We start with the simplified situation of a
sample of iid random variables X1,. . ., Xn with common
cumulative distribution function F. Note that, in practice,
the iid assumption is often not met implying the need to
decluster temporally close excesses over the threshold u
[Coles, 2001]. Then the distribution of the appropriately
normalized maximum Mn = max{X1,. . ., Xn} converges to
the GEV distribution, and the distribution of the excesses
over a high threshold u is approximated by a GP distribution
under mild conditions on F. The sequences used to appro-
priately normalize the maximum, which ensure a non-
degenerate limiting distribution, are not known in practice.
Fortunately, if the appropriately normalized maximum has
asymptotic GEV distribution, so does the maximum itself
but with different location and scale parameters. Hence, for
statistical applications of extreme value theory, it is cus-
tomary to absorb the normalizing sequences into the esti-
mated parameters. We use this convention in our
description of the point process approach. Defining a
sequence of two-dimensional point processes Nn by

Nn ¼ i= nþ 1ð Þ;Xið Þ : i ¼ 1; . . . ; nf g; ð7Þ

it can be seen that the number of points Nn(A) contained
within the set A = [t1, t2]  (u, 1), with [t1, t2] � (0, 1) (see
Figure 2) for sufficiently large u, is binomially distributed
with number of trials n and success probability approxi-
mately given by

p � 1

n
t2 	 t1ð Þ 1þ x

u	 m
s*

� �h i	1=x
; ð8Þ

where we used the GEV/GP approximation mentioned
above. Standard convergence of a binomial distribution to a
Poisson limit intuitively leads to a limiting Poisson process N
with intensity measure np = (t2 	 t1)[1 + x(u	 mÞ=s*]	1/x.
We refer to mathematical details in the book by Coles
[2001], for example Theorem 7.1.1, and the references

therein. Estimation of the parameters in the point process
representation is by maximum likelihood and requires
specialized numerical techniques in the non-stationary
case. Coles [2001] also discusses how the simpler Poisson-
GP approach, commonly used in hydrology [e.g., Madsen
et al., 1997], is related to the point process representation.
[19] Katz et al. [2002] applied the point process approach

to extreme value analysis of the Fort Collins daily precip-
itation data over the entire year. Using a constant threshold
of u = 10 mm, they found a marked annual cycle in the
extreme precipitation with a peak in July, modeled with a
sine wave for the location parameter m and another sine
wave for the transformed scale parameter lns*. Fairly
strong evidence of a heavy tail was found, with an estimate
of x of about 0.18 under the constraint of it having no
annual cycle. Note that little evidence pointed to depen-
dence within the excesses over u and therefore no decluster-
ing was applied in this case.
[20] Our goal is to apply the point process approach to the

daily precipitation data from Pergamino over the entire year
(same data set analyzed by Furrer and Katz [2007], 63 years
of data during 1932–2003). As for the POT approach, the
first thing is to choose a threshold and, since for a weather
generator a model is needed for the entire year, we need a
year-round threshold as well. A time-varying threshold is
theoretically possible and can be used to account for
seasonal variation ensuring enough observed excesses in
each season. However, because time-varying thresholds can
lead to numerical instabilities in the maximization of the
likelihood, it is safer to start with a fixed threshold, avoiding
potential numerical difficulties and providing a good refer-
ence point if a time-varying threshold should be necessary.
[21] Figure 3 shows precipitation intensity data at Perga-

mino. Only the last ten years of the record period are shown
for visibility reasons. Intensities higher than a constant
threshold of u = 16 mm are highlighted, as well as
distinguishing between the winter and summer half of the
year. These data (and the data from the rest of the record
period, not shown here) do not indicate that a time-varying
threshold is necessary and, therefore, we will account for
seasonality only by considering continuously varying
parameters. A common tool for threshold selection is to
fit the model repeatedly using a set of candidate thresholds,
and concentrating on a range of thresholds for which the
resulting parameter estimates do not change too much.
Since we need a year-round threshold, it should not be
too high in order to have sufficient observations during the
drier winter months. The selected threshold is a good
compromise with respect to these points. Again, little
evidence pointed to the need for declustering.
[22] Table 1 contains parameter estimates and Bayesian

information criterion (BIC) values [Schwarz, 1978] for
several models fitted to the Pergamino precipitation data
using a fixed threshold of u = 16 mm. The models include a
seasonal cycle and an ENSO effect (same ENSO index as
used by Furrer and Katz [2007]) in the location parameter m
and in the logarithm of the scale parameter lns* (i.e., same
form of annual cycle as in the study by Katz et al. [2002]
applied to the Fort Collins data). No covariates are intro-
duced for the shape parameter x, in order to keep the model
simple and easily interpretable. Separate fits of a point
process model to winter and summer precipitation data

Figure 2. Illustration of point process representation of
extremes with event A = [t1, t2]  (u, 1).
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suggest that the shape parameter might be smaller during
the drier winter months, but we did not explore this any
further. Model selection within the listed models, on the
other hand, does not change much if considering winter and
summer separately, justifying our year-round application.
The model with minimum BIC includes a seasonal cycle
and an ENSO effect in the location parameter and a seasonal
cycle in the logarithm of the scale parameter, while the
shape parameter is constant. The estimated parameters
indicate a higher location parameter, i.e., higher precipita-
tion extremes, as well as a higher scale parameter, i.e.,
higher variability in precipitation extremes, in southern
hemisphere summer and also a higher location parameter
for positive values of the ENSO index (i.e., during El Niño
events). The magnitude of the shape parameter estimates are
rather small (compared to those for Fort Collins), ranging
from about 0.05 for models without seasonal cycle in the
logarithm of scale to about 0.10 for several alternative
models.

[23] For the construction of diagnostic plots, Coles [2001]
suggests converting the point process parameter values to
the corresponding GP parameters and using those to trans-
form the observed excesses to standard exponential varia-
bles, producing a Q-Q plot on an ‘‘exponential’’ scale.
Figure 4 (left) shows such a Q-Q plot for the chosen model.
The point process model is able to capture the heavy tail of
precipitation excesses in Pergamino resolving the problems
of the gamma model fit to all intensities (i.e., not just
excesses over a high threshold) [Furrer and Katz, 2007]
as seen in Figure 4 (right).

3.2. Penultimate Approximations

[24] The GEV/GP distributions in extreme value theory
can be viewed as ‘‘ultimate’’ approximations. A lesser
known concept involves more refined penultimate approx-
imations. Considering block maxima Mn of finite length n,
for which the shape parameter of the asymptotic (ultimate)
GEV distribution equals 0, i.e., the Gumbel distribution, a
more accurate approximation is actually obtained by using a

Figure 3. Precipitation intensity from the years 1993 to 2002 at Pergamino. Values more than 16 mm
during the southern hemisphere winter months (April-September) are marked by x’s; those of the summer
months (October-March) are marked by circles.

Table 1. Estimated Parameters and BIC Values (Minimum in Bold) for Candidate Point Process Models for Daily Precipitation Extremes

Over the Entire Year With a Threshold of 16 mm at Pergamino

Location m Scale lns*

Shape x BICConstant Cosine Sine ENSO Constant Cosine Sine ENSO

76.52 22.31 0.072 5032.92
74.36 9.76 2.94 21.16 0.044 4869.20
78.07 9.76 2.94 21.16 0.063 4901.39
74.83 25.25 6.81 3.10 0.27 0.07 0.101 4859.30
74.20 9.76 2.81 1.94 21.16 0.044 4867.66
74.62 25.28 6.61 1.87 3.11 0.27 0.07 0.103 4858.24
75.10 25.92 6.73 1.85 3.12 0.28 0.07 <10	2 0.105 4868.38
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non-zero shape parameter, xn say. In statistical terms this
means that no advantage is obtained by constraining the
estimation procedure to x = 0 even if it is known that the
correct limiting distribution is the Gumbel. This approxi-
mation applies equally well to the corresponding GP distri-
bution for the excess over a high but finite threshold.
Precise conditions and related theoretical results can be
found in chapter 3 of Embrechts et al. [1997] and chapter 6
of Reiss and Thomas [2007]. Examples of the use of pen-
ultimate approximations in the geophysical sciences and
related literature include that of Abaurrea and Cebrián
[2002] for drought analysis and that of Cook and Harris
[2004] for extreme winds in engineering design.
[25] For our purposes it is sufficient to provide an

expression for xn together with a heuristic argument for
how to obtain it. In the notation of section 3.1 and assuming
additionally that the first and second derivatives of F exist
and that F has an infinite right endpoint, we have that the
distribution of Mn can, on the one hand, be approximated by
a GEV distribution with parameters x, s*, m and, on the
other hand, we have that

Pr Mn � xf g ¼ F xð Þ½ �n� expf	n 1	 F xð Þ½ �g ð9Þ

for n and x large such that n[1 	 F(x)] � constant. Equating
these two approximations, substituting x = m, differentiating
and some further algebra yields

xn ¼
	F 00 mnð Þ
n F 0 mnð Þ½ �2

	 1 ¼ 1

H

� �0
xð Þ
		
x¼mn

where mn ¼ F	1 1	 1

n

� �
;H xð Þ ¼ F 0 xð Þ

1	 F xð Þ ð10Þ

and H is called the hazard function. Moreover, in all
practical cases, (1/H)0(x) ! x as x ! 1. In other words, xn
as given in (10) can be viewed as reflecting preasymptotic
behavior of the shape parameter.
[26] The stretched exponential distribution, proposed by

Wilson and Toumi [2005] as a model for high precipitation
intensity (see section 2), is not heavy-tailed in an ultimate
sense, that is, the Gumbel distribution is the correct asymp-
totic model. However, in a penultimate sense, this distribu-
tion can have either an apparent heavy or bounded tail,
depending on the value of its shape parameter c. In
particular, the GEV shape parameter in the penultimate
approximation for block maxima of length n from a
stretched exponential can be expressed as

xn ¼
1	 c

c lnn
; ð11Þ

which is easily shown by substituting the stretched
exponential cumulative distribution function (5) and its
first and second derivatives into (10). It is obvious from
formula (11) that c needs to be smaller than one in order for
the tail to be heavy in a penultimate sense, i.e., xn > 0. Note
that xn ! 0 as n ! 1 (i.e., consistent with the ultimate
approximation). Wilson and Toumi [2005] argued that c
should universally be 2/3, but they did not actually fix it to
that value in fitting the stretched exponential distribution to
station daily precipitation data from all over the world. If
c = 2/3 and n = 100 (e.g., precipitation occurs on about 27%
of the days within a year), then x100 � 0.11, a reasonable
value for the shape parameter of annual maxima of daily
precipitation. As a rough approximation for the frequency
of occurrence of precipitation within a year, we will take
n = 100 days in subsequent use of (11). Because xn only
varies slowly with n, this approximation is not very
restrictive.

Figure 4. (left) Q-Q plot of observed versus modeled GP quantiles of precipitation excesses over 16 mm
and (right) Q-Q plot of observed versus modeled gamma quantiles of precipitation intensity for the entire
year at Pergamino.
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[27] For purposes of statistical modeling of extreme
precipitation based on station data, we need to choose a
threshold above which the stretched exponential is a good
approximation. Because of dealing with a large number of
sites, Wilson and Toumi [2005] used an automatic threshold
selection rule based on a high quantile. We examine the
choice of threshold more closely. Threshold selection is
even more difficult than in the POT approach with the GP
distribution, because the parameters should continue to
gradually change rather than stabilizing as the threshold
increases. Figure 5 shows Q-Q plots of stretched exponen-
tial model fits along with shape parameter estimates by
maximum likelihood for excess daily precipitation intensity
only from the single months of February in Pergamino and
July in Fort Collins using different candidate thresholds. It
indicates the difficulty of threshold choice in a stretched
exponential model. First, we note that shape parameter
estimates are far from the hypothesized value of 2/3 and
relatively close to one (e.g., c � 0.8 is needed to produce
x100 � 0.05 as is needed for Pergamino) and they do not
decrease with increasing threshold. Second, the model fit
evaluated in terms of the Q-Q plot does not improve
significantly nor monotonically with increasing threshold.
These results typify the difficulties that arise as well for the
remaining months at the same two stations.

[28] At least for our examples, we conclude that although
the stretched exponential distribution has some appealing
features as a candidate model for extreme precipitation, it
has the drawback of difficult threshold selection. Too low a
threshold does not provide an adequate fit, too high a
threshold loses the benefit of the penultimate approximation.

4. Unified Modeling

[29] Both extreme value theory approaches discussed in
the previous section cannot be used per se in a weather
generator framework: they model only extreme precipitation
and give no indication of the behavior of the bulk of the
data. In this section, we describe some possibilities of how
to achieve unified modeling of the entire precipitation
intensity distribution, in part driven by the results from
upper tail modeling.

4.1. Single Distribution

[30] Ideally, a distribution replacing the gamma should be
able to model the entire range of precipitation events, i.e.,
low to moderate as well as extreme events, satisfactorily
while still being admissible in a GLM framework to allow
the straightforward introduction of covariates and system-
atic assessment of uncertainties. A candidate distribution
remains the stretched exponential (i.e., with no threshold),

Figure 5. Q-Q plots of observed versus modeled stretched exponential quantiles of precipitation
excesses in (top) February at Pergamino and (bottom) July at Fort Collins using different thresholds
(threshold value and estimated shape parameter are indicated in the individual panels).

W12439 FURRER AND KATZ: EXTREME PRECIPITATION IN WEATHER GENERATORS

7 of 13

W12439



with extremal properties discussed in the previous section,
see for example chapter 13, section 3.2 of McCullagh and
Nelder [1989] for its admissibility in a GLM framework and
Yan et al. [2006] for a climate application. In a few
instances, the stretched exponential has been previously
fitted to the entire distribution of precipitation intensity,
particularly for accumulations over time periods shorter
than a day [Wilks, 1989; Wong, 1977]. Because the gamma
distribution with shape parameter in the typical range for
daily intensity (i.e., 0.5 < a < 1) cannot produce more than a
non-negligible apparent heavy tail in a penultimate sense, it
is conceivable that its replacement with the stretched
exponential could still result in an improved fit for high
intensity.
[31] Similarly to the gamma GLM, we model the loga-

rithm of the scale of the stretched exponential distribution as
a function of covariates in a GLM framework while the
shape parameter is kept constant. Fitting gamma and
stretched exponential GLMs to Fort Collins precipitation
intensity over the entire year with seasonal cycles in the
logarithms of the respective scale parameters results in the
Q-Q plots of Figure 6. In order to produce these plots, to
adjust for the non-stationary form of the fitted model, the
precipitation intensity data have been re-scaled by the
appropriate value of the modeled scale parameters as
functions of the day of the year and then compared with
respective theoretical distributions of unit scale and estimated

shape parameter. As a consequence of the re-scaling, which
is different for the two models but necessary to obtain Q-Q
plots in a non-stationary setting, the two plots can only be
compared qualitatively. See Table 2 for estimated coeffi-
cients and BIC values of gamma and stretched exponential
models with and without seasonal cycles. The estimate of
the shape parameter of the stretched exponential (ĉ = 0.77)
is not too far from 2/3 but the apparent heavy tail charac-
terized by the corresponding x100 � 0.06 is still rather light.
From Figure 6 it is evident that the stretched exponential
model only results in a very slight improvement (if any)
over the gamma for the fit in the upper tail of the precip-
itation intensity distribution. At Pergamino, the estimated
shape parameter of the stretched exponential and the
penultimate shape parameter of the GEV take similar values
(ĉ = 0.70 and x100 � 0.09) to those at Fort Collins, again a
Q-Q-plot (not shown here) reveals a slightly better fit
than that for the gamma model, but still inadequate in the
upper tail.

4.2. Hybrid Approach

[32] A simple procedure to generate potentially improved
higher precipitation intensity is to replace the values drawn
from a gamma distribution which fall above a given
threshold by values drawn from a GP distribution. However,
this hybrid approach can create a problem of the underlying
density function not being continuous at the threshold u. We

Figure 6. Q-Q plots of (left) observed versus gamma and (right) stretched exponential GLM quantiles
of precipitation intensity for the entire year at Fort Collins.

Table 2. Estimated Parameters and BIC Values (Minimum in Bold) for Candidate Gamma (Left) and Stretched Exponential (Right)

Models for Daily Precipitation Intensity Over the Entire Year at Fort Collins

Scale lns

Shape a BIC

Scale lns

Shape c BICConstant Cosine Sine Constant Cosine Sine

1.56 0.69 41,082.34 1.36 0.76 40,365.52
1.47 	0.33 0.04 0.71 40,845.63 1.29 	0.30 0.05 0.77 40,206.74
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refine this simple procedure through a compromise by
estimating a gamma distribution from all the data (i.e., as
in a conventional weather generator), estimating a GP
distribution from the data above the threshold (i.e., as in a
conventional extreme value analysis such as the point
process technique described in section 3), and then using
only the estimated shape parameter x of the GP while
adjusting its scale parameter in order to achieve a contin-
uous density. We call the resulting distribution a hybrid
gamma/GP distribution. With this approach, we need to
abandon a simple GLM setting but, as elaborated below, it
is still feasible to include covariates.
[33] An expression for the adjustment of the scale

parameter of the GP is obtained as follows. Denote by
h the hybrid gamma/GP density we want to specify, by f
the density and by F the cumulative distribution function of
the fitted gamma distribution, and by g the density of the GP
distribution for the excesses over the threshold u with scale
parameter s and shape parameter x. Observe that g(u) = 1/s
and that the mass of g is concentrated on the interval (u, 1)
[see (4)]. By design the hybrid density satisfies

h xð Þ ¼ f xð Þ for x � u and

h xð Þ ¼ 1	 F uð Þ½ �g xð Þ for x > u; ð12Þ

where the factor [1 	 F(u)] ensures that h is normalized.
For h to be continuous at u it is necessary that f(u) = [1 	
F(u)]g(u) = [1 	 F(u)](1/s), i.e.,

s ¼ 1	 F uð Þ½ �
f uð Þ : ð13Þ

Note that s is hence the reciprocal of the hazard function
[see (10)] of the gamma distribution evaluated at the
threshold u. Further note that (13) actually holds for the
hybrid of any density with the GP, not just the gamma.
[34] To apply (13) the gamma distribution needs to be

estimated based on the entire data set in order to obtain an
estimate of the probability of intensity higher than the
threshold u. Covariate models (if any) are fitted separately
for the gamma and the GP distributions as in the usual GLM
and extreme value analysis settings. However, since the
scale parameter of the GP distribution is adjusted using
the fitted gamma distribution, its functional dependence on
the covariates is no longer determined by the GP covariate
model. A similar approach involving the gamma and the GP
distribution is described by Vrac and Naveau [2007], in
particular their limiting case of t = 0 (i.e., the parameter that
governs the speed of the transition from gamma to GP in the
weight function for the dynamic mixture) models precipi-
tation intensity with a gamma below a threshold and a GP
above a threshold. Drawbacks to the use of their approach
in a weather generator setting are the discontinuity at the
threshold in the limiting case and the difficulty of incorpo-
rating covariates.
[35] Figure 7 shows the fitted gamma, GP and hybrid

gamma/GP log-densities for precipitation intensity from
Pergamino in the single month of February (u = 32 mm)
and Fort Collins in the single month of July (u = 15 mm, the
logarithm of the density has been taken to improve visibil-
ity). Figure 7 shows that the hybrid density is indeed
continuous and has a heavier tail than the corresponding
gamma density (estimates of the GP shape parameter are
0.20 for February in Pergamino and 0.29 for July in Fort
Collins). It also indicates that the heaviness of the upper tail
of the Fort Collins data is much more pronounced than for

Figure 7. Log-density functions fitted to (left) February precipitation intensity at Pergamino and (right)
July precipitation intensity at Fort Collins. Gamma (dashed lines), GP (dotted lines) and hybrid gamma/
GP (solid lines) models are shown. The data are indicated by horizontal marks and the threshold u by a
horizontal line.
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Pergamino (at least in July and February, respectively),
therefore more improvement is to be expected in applying
this approach to the Fort Collins data. Note that the thresh-
olds of 32 and 15mm, higher than when dealing with the
entire year, were chosen because February and July are in
the respective wet seasons.
[36] Figure 8 shows Q-Q plots of fitted gamma, hybrid

gamma/GP as well as the stretched exponential models,
again for precipitation intensity from Pergamino in February
and Fort Collins in July. We compare the methods for a
single month due to the scaling issues mentioned above
which imply that comparisons of models for the entire year
via Q-Q plots are difficult. As expected, the improvement of
the hybrid approach is more clear-cut for the Fort Collins
data, where it produces higher quantiles than do the
stretched exponential and the gamma. None of the methods
provides high enough quantiles as can be seen, for example,
by the small fraction of the scale of the data quantiles that is
covered by the modeled quantiles. For Pergamino both the

stretched exponential and the hybrid approach produce
quantiles that approximately cover the scale of the data
quantiles, the largest quantile from the hybrid approach
being even higher than the largest data quantile. From
Figure 8 it is obvious that the hybrid approach implies a
clear improvement for high intensities for cases like Fort
Collins with a marked heavy tail. In less pronounced cases,
as Pergamino, it does not worsen the situation.
[37] Returning to modeling precipitation over the entire

year, we fit a gamma GLM with a seasonal cycle in the
logarithm of the scale parameter to the precipitation inten-
sity data from Fort Collins. A fixed threshold of u = 10mm
throughout the year and a seasonal cycle in the logarithm of
the scale parameter are used to estimate the shape parameter
of the GP distribution (x̂ = 0.2), while the scale parameter is
actually derived indirectly from the fitted gamma distribu-
tion (note that slightly different estimates of x may be
produced by the point process approach than by only
modeling the excesses, because the functional form of the

Figure 8. Q-Q plots of observed versus modeled gamma (g), hybrid gamma/GP (h) and stretched
exponential (s) quantiles of precipitation intensity in (left) February at Pergamino and (right) July at Fort
Collins.

Figure 9. High quantiles of fitted gamma (solid lines) and hybrid gamma/GP (dashed lines)
distributions as functions of the day of year for Fort Collins precipitation intensity. Empirical quantiles
calculated from the 100 years of observed precipitation are shown as dots.
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dependence of the extremal parameters on the covariates is
not necessarily identical). Figure 9 shows the 95%, 98% and
99% quantiles of the fitted gamma and hybrid gamma/GP
distributions as functions of the day of the year, along
with corresponding empirical quantiles calculated from
the 100 years of observed precipitation. It indicates that the
higher the quantile the more noticeable the effect of the
hybrid approach, especially during the wet summer season.
[38] In order to further illustrate this ability of the hybrid

approach to model high quantiles, we simulated time series
of daily precipitation from a GLM weather generator using
an identical (except for the lack of ENSO as a covariate)
form of model for precipitation at Fort Collins as proposed by
Furrer and Katz [2007] for Pergamino. 500 samples of 100
years of daily data have been generated, and from those
summer (April-September) maxima have been calculated
and GEV distributions fitted. The resulting 50-year return
levels along with corresponding data values (including
confidence intervals obtained by normal approximation
using an approximate variance of the estimated quantile
derived by the delta method [Coles, 2001]) are shown in
Figure 10. Although still not perfect, the hybrid distribution
is a clear improvement over a gamma distribution for the
Fort Collins data. A similar exercise for the Pergamino data
leads to a less tangible improvement. However, as remarked
before, the heaviness of the tail for Pergamino precipitation
is less pronounced and even if a hybrid approach does not
necessarily help, it does not hurt either.
[39] As with the conventional POT technique, threshold

selection for the hybrid model is an important factor. The
same techniques for threshold choice apply here, but it
should be kept in mind that the fitted gamma distribution is
used to estimate the probability of exceeding the threshold

[i.e., 1 	 F(u)]. In other words, the mass of the heavy-tailed
GP part of the hybrid distribution is determined by the fitted
gamma distribution, hence estimating this probability too
low (i.e., choosing too high a threshold) implies less
emphasis on a possibly heavy tail. Therefore the threshold
u should be chosen in a region where the fit of the gamma
distribution is not yet too bad, so that this probability is not
unduly underestimated.

4.3. Mixture of Distributions

[40] Threshold selection for the stretched exponential
distribution fit to daily precipitation intensity was found
difficult in practice (section 3.2). An alternative approach
would be to consider a mixture of distributions, with one of
the components being the stretched exponential (i.e., with
threshold u = 0). In this way, threshold selection could be
avoided, while still taking advantage of the capability of the
stretched exponential to produce an apparent heavy upper
tail. Given the common use of a mixture of two exponen-
tials (3) as a model for intensity, it would be natural to
replace one of these exponentials with a stretched exponen-
tial (note that the stretched exponential (5) with u = 0
reduces to the exponential when the shape parameter c = 1);
that is, a mixture whose cumulative distribution function is
of the form

F x;w; s1; c;s2ð Þ ¼ 1	 1	 wð Þ exp 	 x

s1

� �
	 w exp 	 x

s2

� �c
 �
;

x > 0; 0 < w < 1;s1; c;s2 > 0: ð14Þ

It might also be plausible to constrain the shape parameter c
in (14) to be equal to 2/3, the value hypothesized by Wilson
and Toumi [2005], rather than estimating it from the data.
Then only three parameters (i.e., two scale parameters, s1
and s2, and the mixing weight w) would need to be

Figure 10. Boxplots of 50-year return levels of summer
(April-September) maximal precipitation intensity for Fort
Collins from 500 simulated samples using the gamma and
the hybrid gamma/GP models along with the corresponding
observed value and confidence interval (indicated by
horizontal dashed lines, range of confidence interval by
vertical dashed line).

Figure 11. Q-Q plots of observed versus modeled gamma
(g), mixed exponential (e) and mixed exponential/stretched
exponential with c = 2/3 (s) quantiles of precipitation
intensity at Fort Collins in July.
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estimated. Further, a stretched exponential component with
c � 1 should dominate the mixture in the upper tail. Such a
mixture would still be simpler than the more general
dynamic mixture model that Vrac and Naveau [2007]
proposed for intensity.
[41] For daily precipitation intensity at Fort Collins in

July, Table 3 lists the parameter estimates for two mixture
models, a mixture of two exponentials (3) and an exponen-
tial/stretched exponential mixture (14) with c = 2/3. See
Figure 11 for the corresponding Q-Q plots. Compared to
the gamma distribution the fit for the mixture of two
exponentials is an improvement for high intensity, but still
woefully inadequate. On the other hand, the exponential/
stretched exponential mixture does not improve upon the
mixed exponential in terms of overall fit (see log-likelihood
values in Table 3). Yet it comes much closer to capturing the
apparent heavy tail, while the fit to small to moderate values
of intensity remains acceptable (Figure 11). If the shape
parameter c of the stretched exponential in (14) were not
constrained to equal 2/3, then the log-likelihood value
improves substantially, but the shape parameter estimate is
much higher than 2/3 (in fact greater than one). So the
benefit of the penultimate approximation is completely lost,
with the fit to the upper tail of intensity seriously deterio-
rating (Q-Q plot not shown).
[42] For other sites or even other months at Fort Collins,

one should not necessarily expect to obtain a satisfactory fit
to small to moderate intensities as well as high intensities
using an exponential/stretched exponential mixture with the
brute force constraint of c = 2/3. Nevertheless, the results
for the single month of July at Fort Collins indicate the
capability of the stretched exponential distribution to man-
ufacture an apparent heavy upper tail. Unfortunately, the
implementation of such a mixture model for precipitation
intensity within a stochastic weather generator appears
problematic, and the mixture approach therefore cannot be
directly compared to the methods described in the previous
two sections.

5. Discussion

[43] We have examined different ways of attempting to
improve the simulation of daily extreme high precipitation
by parametric stochastic weather generators. One approach,
based on the stretched exponential distribution and justified
by penultimate extreme value theory, appears difficult to
implement in practice. An alternative approach, consisting
of a hybrid distribution combining conventional modeling
of precipitation intensity for low to moderate values with
modeling of high intensity based on ultimate extreme value
theory, appears more promising. This hybrid technique not
only is capable of making the simulated distribution of
precipitation intensity heavier, but still can allow for annual
cycles and other covariates as needed in weather generators.

[44] By building on an existing GLM-based stochastic
weather generator, the hybrid approach for modeling pre-
cipitation intensity is reasonably straightforward to imple-
ment. Nevertheless, it does require the estimation of at least
one additional parameter, being difficult to retain the
parsimonious nature of the original GLM-based weather
generator. The hybrid approach only avoids additional
complexity by constraining the relationship between high
precipitation intensity and any covariates to be driven by the
relationship in the existing weather generator (i.e., primarily
by low to moderate intensity). Only the case of the gener-
ation of time series of daily weather at a single site has been
treated, but the extension of the hybrid approach to multi-
site weather generators would appear feasible.
[45] Because temperature variables enter into parametric

stochastic weather generators in a more complicated manner
than does precipitation intensity, it might well be more
difficult to implement improvements in the treatment of
temperature extremes. Nevertheless, present weather gener-
ators do not necessarily simulate realistically extreme tem-
perature events in the form of spells (e.g., heat waves or
cold spells) [Qian et al., 2008; Semenov, 2008]. Like the
present paper, reliance on the statistical theory of extreme
values would appear to be a promising avenue for devising
any such improved methods.
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