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Abstract

This article describes the extreme value analysis (EVA) R package extRemes ver-
sion 2.0, which is completely redesigned from previous versions. The functions primarily
provide utilities for implementing univariate EVA, with a focus on weather and climate
applications, including the incorporation of covariates, as well as some functionality for
assessing bivariate tail dependence.
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1. Introduction
In this paper, we describe a new version (≥ 2.0) of the R (R Core Team 2016) package ex-
tRemes (Gilleland and Katz 2011; Gilleland 2016), which is a major redesign from previous
versions. Weather and climate applications are the intended focus of the package, although
the functions could be used in other applications. The new version of the package is to
be used from the command line and implements various methods from (predominantly uni-
variate) extreme value theory, whereas previous versions provided graphical user interfaces
predominantly to the R package ismev (Heffernan and Stephenson 2012). Package ismev is a
companion package to Coles (2001), which was originally written for the S language, ported
into R by Alec G. Stephenson, and currently is maintained by Eric Gilleland.
A relatively recent review of extreme value analysis (EVA) software can be found in Gilleland,
Ribatet, and Stephenson (2013) where thirteen R packages were addressed. The new version of
the package attempts to fill some of the missing gaps in these packages from univariate EVA,
although some additional multivariate capacity may be added in the future. For convenience
sake, we adopt the notation of Coles (2001) as much as possible.
The first version of extRemes was solely a graphical user interface (GUI) to ismev designed
to shorten the learning curve of EVA, particularly the handling of non-stationarity, for the
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weather and climate science communities. Over the years, extRemes garnered a large user
community, which also resulted in considerable amounts of feedback and questions pertaining
to EVA. Because of the importance of Coles (2001) on EVA, for which ismev was written, it
was decided to keep this package as close as possible to the original so that it can continue to
be used along with this text. Therefore, extRemes itself has been re-designed, without any
GUI interfaces, to better follow an object-oriented structure, making many functions much
more user-friendly, as well as a including formula approach to the incorporation of covariates
into parameter estimates. In order to maintain the popular GUI-based functions, a new
companion package, in2extRemes (Gilleland 2015), provides point-and-click GUI windows
for some of the main functions in extRemes.1

Other main EVA packages in R include: evd (Stephenson 2002), evdbayes (Stephenson and
Ribatet 2014), evir (Pfaff and McNeil 2012), fExtremes (Diethelm Wuertz and many oth-
ers 2013), lmom (Hosking 2014), SpatialExtremes (Ribatet 2009; Ribatet, Singleton, and
R Core Team 2013) and texmex (Southworth and Heffernan 2011). Briefly, summarizing
from Gilleland et al. (2013), among these packages, extRemes, ismev, SpatialExtremes, and
texmex are the only ones with substantial ability to account for non-stationary model fit-
ting in the EVA context. The package texmex allows for maximum likelihood estimation
(MLE), penalized MLE and Bayesian estimation, and primarily contains functionality for
fitting the Heffernan and Tawn (2004) conditional extremes models for multivariate anal-
ysis, but also includes some univariate capabilities. SpatialExtremes includes MLE, maxi-
mum composite likelihood and Bayesian estimation. The ismev package includes only MLE,
whereas version 2 of extRemes contains MLE, generalized MLE (Martins and Stedinger 2000,
2001), L-moments (stationary case only), and some functionality for Bayesian estimation.
The packages evd and evdbayes have some functionality for non-stationary estimation, but
the main emphasis is on bivariate EVA for the former and (univariate) Bayesian estima-
tion for the latter. Some of the strengths of extRemes include: systematic, thorough treat-
ment of univariate extremes (understood to include covariates), an extensive tutorial with
use of real/realistic weather and climate data sets, as well as a large number of regular
users who provide considerable feedback for continuing improvement, as well as continued
financial support through the Weather and Climate Impacts Assessment Science Program
(http://www.assessment.ucar.edu/) that allows for ongoing package maintenance and
user assistance. Package extRemes is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=extRemes.

2. Extreme value analysis background
Suppose we want to win the jackpot in the power ball game of the Colorado Lottery in
one single draw, which has a reported odds of winning of 1 in 176 million (http://www.
coloradolottery.com/GAMES/POWERBALL/). Recognizing the small chance of winning on
one single draw (P{winning the jackpot on one draw} ≈ 5.7 × 10−9), suppose we decide to
play the game once every day for a long period of time with the desire of winning the jackpot
at least one time.2

1A separate user guide for in2extRemes is in preparation, and should be released soon as an NCAR technical
note along with a web-based version.

2To keep the example simple, we focus solely on winning the jackpot without considering the possibility of
winning smaller, if still substantial, prizes.

http://www.assessment.ucar.edu/
https://CRAN.R-project.org/package=extRemes
http://www.coloradolottery.com/GAMES/POWERBALL/
http://www.coloradolottery.com/GAMES/POWERBALL/
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Simon Denis Poisson (1781–1840) introduced the probability distribution, subsequently named
after him, as the limit of the binomial distribution when the probability of success tends to
zero at a rate that is fast enough that the expected number of events is constant (Stigler
1986). Let N denote the number of times the grand prize is won over n days. Then N has
an approximate Poisson distribution with intensity parameter nλ. So,

P{N = 0} = e−nλ and P{N > 0} = 1− e−nλ. (1)

We can, therefore, use the Poisson distribution to approximate such probabilities. For exam-
ple, the probability of winning on at least one single draw after ten years of playing every day
of the year (the Poisson intensity, here, is nλ ≈ (5.7×10−9)·(10 years)·(365.25 days per year))
yields a considerably low probability of success (≈ 2.08× 10−5), and after one-hundred years,
the probability is still very small at about 0.0002. After one-thousand years, the probability
remains very low at about 0.002. The waiting time before winning the jackpot has an ap-
proximate exponential distribution with mean ≈ 1/((5.7 × 10−9) · (365.25)), which is more
than 480 thousand years.
While we do not require events to be as rare as in the example above, statistical EVA refers to
events with a low probability of occurrence. The Poisson distribution informs about the fre-
quency of occurrence of a rare event, but what about the magnitude? If we have independent
and identically distributed random variables X1, . . . , Xn that follow a distribution function
(df), F (sometimes called the “parent” df), and we want to approximate the df for the max-
imum, Mn = max{X1, . . . , Xn}, then we have that P{Mn ≤ z} = Fn(z) −→ 0 as n −→ ∞;
unless F has a finite upper limit xU and z ≥ xU . Furthermore, in practice, F must be esti-
mated, and small errors in the estimation of F often lead to large errors in the estimation of
Fn.
Analogous to the Central Limit Theorem that provides theoretical support for the normal df
when approximating the distribution of averages, it is possible to stabilize the distribution of
many random variables so that asymptotically their extreme values follow specific df’s.
There are two primary approaches to analyzing extremes of a dataset. The first approach
reduces the data considerably by taking maxima of long blocks of data, e.g., annual maxima.
The second approach is to analyze excesses over a high threshold. Both approaches can
be characterized in terms of a Poisson process, which allows for simultaneously fitting of
parameters concerning both the frequency and intensity of extreme events.
The generalized extreme value (GEV) df has theoretical justification for fitting to block max-
ima of data and the generalized Pareto (GP) df has similar justification for fitting to excesses
over a high threshold. The GEV df is given by

G(z) = exp
[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ

+

]
, (2)

where y+ = max{y, 0}, σ > 0 and −∞ < µ, ξ < ∞ (cf. Coles 2001). Equation 2 envelops
three types of df’s depending on the sign of the shape parameter, ξ. The heavy-tailed Fréchet
df results from ξ > 0, and the upper bounded Weibull df (sometimes referred to as the reverse
or reflected Weibull df) when ξ < 0. The Gumbel type is obtained by taking the limit as
ξ −→ 0 giving

G(z) = exp
[
− exp

{
−
(
z − µ
σ

)}]
, −∞ < z <∞. (3)
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The quantiles of the GEV df are of particular interest because of their interpretation as return
levels; the value expected to be exceeded on average once every 1/p periods, where 1 − p is
the specific probability associated with the quantile. We seek zp such that G(zp) = 1 − p,
where G is as in Equation 2. Letting yp = −1/ ln(1− p), then the associated return level zp
is

zp =
{
µ+ σ

ξ

[
yξp − 1

]
, for ξ 6= 0,

µ+ σ ln yp, for ξ = 0.
(4)

If zp is plotted against ln yp, then the type of distribution determines the curvature of the
resulting line: for ξ = 0 (Gumbel) the plot is a straight line, for ξ > 0 (Fréchet) the plot
is concave with no finite upper bound, and for ξ < 0 (Weibull) the curve is convex with an
asymptotic upper limit as p −→ 0 at its upper bound, µ− σ/ξ.
The GP df is given by

H(x) = 1−
[
1 + ξ

(
x− u
σu

)]−1/ξ

+
, (5)

where u is a high threshold, x > u, scale parameter σu > 0 (depending on the threshold u),
and shape parameter −∞ < ξ < ∞. Again, ξ determines three types of df’s (with the same
interpretation as for the GEV df): heavy tail when ξ > 0 (Pareto), upper bound when ξ < 0
(Beta) and exponential in the limit as ξ −→ 0, which results in3

H(x) = 1− e−(x−u)/σ. (6)

The GP df is an approximation of the upper tail of a parent df. If G is the limiting df
of standardized maxima, a GEV df with location, scale and shape parameters µ, σ and ξ,
respectively, then the GP df has the same shape parameter ξ and scale parameter σu =
σ + ξ(u− µ). The quantiles of the GP df are easily obtained by setting Equation 5 equal to
1− p and inverting. However, the quantiles of the GP df cannot be as readily interpreted as
return levels because the data no longer derive from specific blocks of equal length. Instead,
an estimate of the probability of exceeding the threshold, e.g., called ζu, is required. Then,
the value xm that is exceeded on average once every m observations (i.e., an estimated return
level) is

xm =
{
u+ σu

ξ

[
(mζu)ξ − 1

]
, ξ 6= 0,

u+ σu ln(mζu), ξ = 0.
(7)

2.1. Non-stationarity

If it is believed that the extremes of the data are not stationary, then it is possible to incor-
porate this information into the parameters. For example,

µ(t) = µ0 + µ1t+ µ2t
2,

σ(t) = σ0 + σ1t,

ξ(t) =
{
ξ0, t ≤ t0,
ξ1, t > t0.

3In this case, the scale parameter does not depend on u.
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In the above models, each parameter varies with time; the location parameter follows a
quadratic formula of time, the scale parameter a linear function, and the shape varies between
two time periods. Because the scale parameter must be positive everywhere, it is often also
modeled using a log link function as given by

ln σ(t) = φ0 + φ1t.

2.2. Point process approach

Another way to model extreme values is through a point process (PP) characterization, which
allows for modeling both the frequency of exceeding a high threshold and the values of the
excesses above it. This approach was first developed probabilistically by Leadbetter, Lind-
gren, and Rootzén (1983) and Resnick (1987), and as a statistical technique by Smith (1989)
and Davison and Smith (1990). Briefly, if a process is stationary and satisfies an asymptotic
lack of “clustering” condition for values that exceed a high threshold, then its limiting form is
non-homogeneous Poisson with intensity measure, Λ, on a set of the form A = (t1, t2)×(x,∞)
given by

Λ(A) = (t2 − t1) ·
[
1 + ξ

x− µ
σ

]−1/ξ

+
,

where the parameters µ, σ and ξ are interpreted exactly as in Equation 2. In fact, if the time
scale is measured in years, then Equation 2 gives the probability that the set (t1, t1+1)×(x,∞)
is empty, which is equivalent to the probability that the annual maximum is less than or equal
to x. In other words, the intensity measure needs to be multiplied by ny (the number of years
of data) to expand the time interval from (0, 1) to a yearly time scale (as in Equation 7.8 in
Coles 2001).

2.3. Parameter estimation

There are several common methods for estimating the parameters of the GEV and GP df’s, as
well as of the PP. Version 2.0 of package extRemes provides four possibilities: (i) maximum
likelihood estimation (MLE), (ii) generalized MLE (GMLE, Martins and Stedinger 2000,
2001), (iii) Bayesian estimation and (iv) L-moments estimation (only without parameter
covariates).
For methods (i) to (iii), a likelihood function is needed. Because no analytic solution to
the optimization problem exists, the MLE solution is found via numerical routines. Defining
y+ = max{y, 0} and letting z1, . . . , zm represent the block maxima of some sample consisting
of m blocks of length n, the log-likelihood for the GEV df is

`(µ, σ, ξ; z1, . . . , zm) =

−m ln σ − (1 + 1/ξ)
m∑
i=1

ln
[
1 + ξ

(
zi − µ
σ

)]
+
−

m∑
i=1

[
1 + ξ

(
zi − µ
σ

)]−1/ξ

+
. (8)

Because the shape parameter of the Gumbel df (i.e., ξ = 0) represents a single point in
a continuous parameter space (see Equation 2), there is zero probability of obtaining an
estimated shape parameter that is exactly zero. It is possible to fit the Gumbel df separately
and test the hypothesis of ξ = 0 versus ξ 6= 0 (or, equivalently, determine if zero falls within
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the confidence limits for the shape parameter), but it is arguably preferable to always allow
the shape parameter to be nonzero even if such a test supports the Gumbel hypothesis.4 This
can be performed using the likelihood-ratio test (Coles 2001) or by checking whether or not
zero falls within the confidence intervals for ξ. The latter approach does not require fitting
the Gumbel df to the data. The log-likelihood for the Gumbel type is

`(µ, σ; z1, . . . , zm) = −m ln σ −
m∑
i=1

(
zi − µ
σ

)
−

m∑
i=1

exp
{
−
(
zi − µ
σ

)}
. (9)

Setting yi, . . . , yk to be only those values of x1, . . . , xn that exceed the threshold, the GP
log-likelihood is given by

`(σu, ξ; y1, . . . , yk) = −k ln σu − (1 + 1/ξ)
k∑
i=1

ln
{[

1 + ξ

(
yi − u
σu

)]
+

}
, (10)

where y+ = max{y, 0} so that any value yi with parameter combination such that 1 + ξ(yi −
u)/σu ≤ 0 would yield a log-likelihood of −∞. Similar to the case for the Gumbel, the shape
parameter of the exponential is also a single point in a continuous parameter space, with
log-likelihood

`(σu; y1, . . . , yk) = −k ln σ − 1
σ

k∑
i=1

(yi − u). (11)

Finally, the PP log-likelihood is

`(µ, σ, ξ;x1, . . . , xn) =

− k ln σ − (1/ξ + 1)
n∑
i=1

[
1 + ξ

σ
(xi − u)

]
xi>u

− ny
(

1 + ξ

σ
(u− µ)

)−1/ξ
, (12)

where ny denotes the number of years of data (so that GEV parameters are for annual
maxima), and [·]xi>u denotes the indicator function. Even though the likelihood (12) involves
excesses, the parameterization is in terms of the GEV df, not the GP df.
Version ≥ 2.0 of package extRemes also allows to determine confidence intervals for parameter
estimates and associated return levels. For the L-moments approach, parametric bootstrap in-
tervals are calculated. For Bayesian estimation, the upper and lower quantiles of the posterior
probability distribution for the parameters and return levels (possibly after a burn-in period)
of the MCMC sample are taken, and for MLE/GMLE several options are available: normal
approximation (perhaps via the delta method), profile-likelihood, and parametric bootstrap.

2.4. Dependence

Temporal dependence and declustering. The above theoretical justifications for using
the extreme value (EV) df’s is predicated on an i.i.d. assumption for the extremes. When
taking block maxima over large blocks, this is usually a reasonable assumption. However, in
the case of threshold excesses, it is often violated. Perhaps the simplest approach to handling

4This recommendation is based on practical considerations as given in Coles, Pericchi, and Sisson (2003)
and on penultimate approximations in extreme value theory (Reiss and Thomas 2007).
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dependence above the threshold is to decluster the excesses by attempting to identify clus-
ters of excesses and replacing them with a single value, such as their maximum. extRemes
supports two methods for performing such a procedure (runs and intervals). To determine
if dependence is present, one approach that is available with extRemes is to estimate the ex-
tremal index, where values less than unity imply some dependence, with stronger dependence
as the value decreases (with one interpretation of the extremal index being the limit of the
reciprocal of the mean cluster length as the threshold increases). Reiss and Thomas (2007)
suggest an auto-tail dependence estimate, along with a plot against increasing lags, analogous
to the autocorrelation function plots from time series analysis.

Asymptotic tail dependence. In the case of two variables, it is sometimes of interest
to investigate the tail dependence between the variables. extRemes includes a function for
employing a tail dependence test with the null hypothesis that the two variables are tail
dependent. We refer the reader to Reiss and Thomas (2007) for specific details of the statistics
and the test, but to summarize their interpretation for the examples herein, we provide some
brief details.
Specifically, for two random variables X and Y with df’s F and G and a threshold u, define
U = F (X) and V = G(Y ), which are, by the probability integral transform, uniformly
distributed random variables, and consider

χ(u) = P
{
Y > G−1(u)|X > F−1(u)

}
= P {V > u|U > u} ,

χ̄(u) = 2 log (P {U > u})
log (P {U > u, V > u}) − 1.

Properties of the statistics include (let limu−→1 χ(u) = χ and limu−→1 χ̄(u) = χ̄): (i) 0 ≤
χ(u) ≤ 1 and −1 ≤ χ̄ ≤ 1, (ii) if X and Y are stochastically independent, then χ(u) = 1− u
and χ̄(u) = 0, (iii) if they are completely dependent, χ̄ = 1, and (iv) if χ = 0 and χ̄ < 1, then
there is tail dependence with χ̄ determining the degree of dependence.
For auto-tail dependence (i.e., a clustering at high levels for a single time series), the definitions
for χ(u) and χ̄(u) are modified (cf. Sibuya 1960; Coles, Heffernan, and Tawn 1999; Coles 2001;
Reiss and Thomas 2007) for a series of identically distributed random variables X1, . . . , Xn

with common df F and i ≤ n− h as

ρ(u, h) = P{X1+h > F−1(u)|X1 > F−1(u)}

and
ρ̄(u, h) = 2 log P{X1 > F−1(u)}

log P{X1 > F−1(u), X1+h > F−1(u)} .

For more on EVA, see Coles (2001); Katz, Parlange, and Naveau (2002); Beirlant, Goegebeur,
Teugels, and Segers (2004); De Haan and Ferreira (2006); Reiss and Thomas (2007).

3. Illustration: extRemes
Version 2.0 of extRemes depends on Lmoments (Karvanen 2006, 2011), car (Fox and Weis-
berg 2011), and distillery (Gilleland 2013). The primary function of extRemes version 2.0 is
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Figure 1: Annual maximum winter temperature at Port Jervis, New York (Thompson and
Wallace 1998; Wettstein and Mearns 2002).

called fevd. A run through the example in its help file will shed much light on the function-
ality of the package. Several method functions operate on objects fitted by fevd including:
plot (allows for making probability-probability, quantile-quantile and return level plots, his-
tograms, likelihood (and gradient likelihood) traces (MLE/GMLE), as well as MCMC trace
plots (Bayesian)), print, ci (for calculating confidence intervals for parameters and return
levels), distill (strips out only the parameter estimates, their standard errors and possibly
also the (negative) log-likelihood, AIC and BIC as a named vector), return.level (estimates
return levels from the fitted object possibly with confidence intervals), datagrabber (strips
the data component from the resulting fitted list object in order to access the original data),
and predict.
In addition to fitting the extreme value df’s (EVD’s) to data, easy to use functions exist
for finding their probabilities (pevd), densities (devd), likelihood for a specific data sample
(levd), and drawing random samples from EVD’s (revd). There are also similar functions
that work off of an object fitted by fevd: pextRemes and rextRemes.

3.1. Block maxima approach

To demonstrate fitting the GEV df to block maxima data, we will use maximum winter
temperature data from 1927 to 1995 at Port Jervis, New York (Thompson and Wallace 1998;
Wettstein and Mearns 2002). A time series of the data is shown in Figure 1. Note that PORTw
is a data.frame object with a column named TMX1 that gives the annual winter maximum
temperature.

R> data("PORTw", package = "extRemes")
R> plot(PORTw$TMX1, type = "l", col = "darkblue", lwd = 1.5, cex.lab = 1.25,
+ xlab = "Year", ylab = "Maximum winter temperature")



Journal of Statistical Software 9

Location Scale Shape
Estimates 15.14 2.97 −0.22
Std. err. 0.40 0.28 0.07
95% normal approx. (14.36, 15.92) (2.43, 3.51) (−0.36,−0.07)
confidence intervals
for parameter estimates
Covariance of parameter estimates
location 0.16 0.01 −0.01
scale 0.08 −0.01
shape 0.01
Negative log-likelihood 172.74
AIC 351.49
BIC 358.14
Estimated return levels (95% confidence interval)
(degrees centigrade)
2-year 16.19 (15.38, 16.99)
20-year 21.65 (20.40, 22.89)
100-year 23.79 (21.79, 25.78)

Table 1: Estimated GEV df parameters and return levels fitted to the annual winter maximum
temperature (degrees centigrade) at Port Jervis, New York data in Figure 1.

R> fit1 <- fevd(TMX1, PORTw, units = "deg C")
R> distill(fit1)

Figure 2 shows standard diagnostic plots, and Figure 3 shows the likelihood (top row) and
likelihood gradients (bottom row) in a neighborhood of the maximum value attained for each
parameter (holding the other parameters fixed at their maximum likelihood estimates). In
each case, the assumptions for fitting the GEV to the data appear reasonable. The figures
are obtained using the following code.

R> plot(fit1)
R> plot(fit1, "trace")
R> return.level(fit1)
R> return.level(fit1, do.ci = TRUE)
R> ci(fit1, return.period = c(2, 20, 100))

The final three lines of code give estimated return levels, the last two lines give them along
with their (normal approximation) confidence intervals (bottom of Table 1). Note that the
two-year return level corresponds to the median of the GEV df for the fit.
Given the large negative estimate for the shape parameter (upper bounded case), it is unlikely
that the Gumbel hypothesis would be accepted, but there are two ways we can test the
hypothesis using extRemes version ≥ 2.0. The easiest is to use the following line of code,
which gives confidence intervals for each parameter estimate (default used below gives 95%
confidence intervals), which reveals that we reject the null hypothesis of a light-tailed df in
favor of the upper bounded type.

R> ci(fit1, type = "parameter")
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fevd(x = TMX1, data = PORTw, units = "deg C")

Figure 2: Diagnostics from the GEV df fitted to the Port Jervis maximum winter temperature
data shown in Figure 1. Quantile-quantile plot (top left), quantiles from a sample drawn from
the fitted GEV df against the empirical data quantiles with 95% confidence bands (top right),
density plots of empirical data and fitted GEV df (bottom left), and return level plot with 95%
pointwise normal approximation confidence intervals (bottom right). Note that the original
function call is attached as the main label.

Alternatively, we can perform the likelihood-ratio test for which we will need to fit the Gumbel
df to the same set of data.

R> fit0 <- fevd(TMX1, PORTw, type = "Gumbel", units = "deg C")
R> plot(fit0)
R> plot(fit0, "trace")

Next, use the lr.test function to run the test. This function can be used either on a fitted
‘fevd’ object or two likelihood values can be passed.

R> lr.test(fit0, fit1)

Again, the results of the above command provide support for rejecting the null hypothesis of
the Gumbel df (p value ≈ 0.01374). Of course, for the shape parameter and longer return
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Figure 3: Plots of the likelihood and its gradient for each parameter (holding the other
parameters fixed at their maximum-likelihood estimates.

levels, it is often better to obtain confidence intervals from the profile-likelihood method in
order to allow for skewed intervals that may better match the sampling df of these parameters
(cf. Figure 4). This can be performed in extRemes version ≥ 2.0 with the following commands.

R> ci(fit1, type = "parameter", which.par = 3, xrange = c(-0.4, 0.01),
+ nint = 100, method = "proflik", verbose = TRUE)
R> ci(fit1, method = "proflik", xrange = c(22, 28), verbose = TRUE)

From the first lines above, we get an improved 95% confidence interval for the shape parameter
of about (−0.34,−0.05); very similar to the normal approximation limits (Table 1). And from
the last lines, we get that approximate 95% confidence interval for the 100-year return level
based on the profile-likelihood is about (22.43, 27.17), which is also similar in this case to the
normal approximation limits, though shifted a couple of degrees toward the higher end.
When using the profile-likelihood method, it is necessary to specify a range (although the
code will try to find reasonable default values) over which to seek out the confidence in-
tervals. Note also that the above commands produce a plot of the profile-likelihood. It is
generally important to inspect the plot to be sure that the resulting confidence intervals are
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Figure 4: profile-likelihood (solid black line) plot for the 100-year return level estimate for
the GEV df fit to maximum winter temperature data (degrees centigrade) at Port Jervis,
New York. Blue vertical (long dashed) lines emphasize where the profile likelihood crosses
the blue horizontal line, and are the confidence interval estimates (see Coles 2001, for more
explanation of this graph). The vertical (short dashed) line emphasizes the location of the
MLE for the 100-year return level.

not merely the end-points used. Figure 4 shows the profile-likelihood for the 100-year return
level. Because the profile-likelihood clearly crosses both blue vertical dashed lines (where they
cross the blue horizontal line), the resulting intervals are believable. In the case of the shape
parameter, the plot is not as legible, but both vertical blue lines appear to be in the range.5

Suppose now that we wish to know the probability of exceeding certain values based on our
fitted GEV df. Recall that, because the fitted model is of the Weibull type, the upper bound
for the df is approximately 15.1406132 + 2.9724952/0.2171486 ≈ 28.83 degrees centigrade, so
the estimated probability of exceeding this or any value above it will be exactly zero. The
code below finds the probability of exceeding 20, 25, 28.8 and 28.9 degrees centigrade based
on the fitted GEV df stored in the fitted object fit1.

R> pextRemes(fit1, q = c(20, 25, 28.8, 28.9), lower.tail = FALSE)

It is also possible to simulate data from the fitted GEV df using the rextRemes function. For
example, to simulate a sample of size 100, we can use the following code.

R> z <- rextRemes(fit1, 100)
R> fitz <- fevd(z)
R> plot(fitz)

5The procedure for searching for the up crossings differs from the procedure in ismev.
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Bayesian estimation can also be employed with fevd. Future releases of the package may
include greater utility for Bayesian analysis (e.g., Bayes factors, posterior predictive distri-
butions, etc.), but a sample of the posterior distribution by way of MCMC simulation can
already currently be obtained.
Independent normal df’s are the default for the parameter prior df’s.6 The default can be
changed via the priorFun argument, which is a character string naming any function that
takes theta (numeric vector of location, scale and shape parameters) as its first argument,
and returns a single numeric giving the prior density value. See fevdPriorDefault (the
default function used by fevd) for an example of the type of function. Other arguments may
also be included, and these can be passed into fevd via the priorParams argument, which is
a named list. In the case of the default, the arguments m (single numeric or vector of length
equal to the number of parameters in the model giving the prior mean(s)), v (single numeric
or vector of length equal to the number of parameters giving the prior standard deviations)
and log (logical stating whether to return the log of the prior (default) or not).
The default for the proposal df is to use a random walk approach (cf. Coles 2001, Section 9.1.3)
whereby a realization from a normal df (with default mean of zero and standard deviation of
0.1) is added to the previous value. The proposal df can be changed using the proposalFun
and proposalParams arguments. The first is a character naming the function, which must
take the arguments p (a numeric vector of the previous/current parameters), ind (a number
indicating which parameter from p to propose) as well as any additional arguments, and must
return a single proposed parameter. In the MCMC algorithm used by fevd, the parameters
are updated one at a time in random order at each step of the chain. Analogous to the
priorParams argument, proposalParams is a named list of any other optional arguments
to the function named by proposalFun besides p and ind. The default proposal function
can optionally take the arguments mean and sd, which should be single numerics or numeric
vectors with length equal to the number of parameters in the GEV model. These can be used
to change the normal df parameters, and it is often useful to play with the values of sd.
The following code gives an example of fitting the GEV df to the Port Jervis, New York
annual maximum winter temperature data using Bayesian estimation with the default prior
and proposal functions and values. Note that the plot obtained with argument "trace" for
the Bayesian fit gives different plots than for the MLE fit. The default parameter estimates
from the MCMC samples is to take the mean, which can be changed by the user through the
FUN argument.

R> fB <- fevd(TMX1, PORTw, method = "Bayesian")
R> postmode(fB)
R> plot(fB)
R> plot(fB, "trace")
R> ci(fB)
R> ci(fB, type = "parameter")

It is also possible to perform parameter estimation using the GMLE approach proposed
by Martins and Stedinger (2000, 2001), with default priors set to those used therein. Chang-

6The default is to apply the log-transform to the scale parameter so that the normal prior df is for the
log-scale parameter rather than the scale parameter, which is more appropriate when using a normal prior df.
To apply the normal prior df to the untransformed scale parameter, set the use.phi argument to FALSE; note
that FALSE is the default for all other estimation methods.
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Figure 5: MCMC posterior parameter densities and trace plots from fitting the GEV df to
maximum winter temperature data at Port Jervis, New York (cf. Figure 1) using Bayesian
estimation. Vertical dashed lines represent the burn-in period, and horizontal dashed lines
represent the mean of the MCMC sample (after removing the initial “burn-in” values), which
are also the estimates reported via the print method function.

ing the prior information is performed in the same manner as for the Bayesian estimation
procedure above. The approach does not require a proposal df. See the examples in the help
file for fevd for an example of using this method.
Finally, we fit the GEV df to data using L-moments estimation. Note that L-moments
estimation is the only estimation method of function fevd that does not handle incorporation
of parameter covariates.

R> fitLM <- fevd(TMX1, PORTw, method = "Lmoments")
R> plot(fitLM)
R> ci(fitLM)
R> ci(fitLM, type = "parameter")

Next, we proceed with investigation of whether or not the inclusion of covariate information
is statistically significant or not. The dominant mode of large-scale variability in mid-latitude
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Figure 6: Diagnostic plots from fitting the GEV df to Port Jervis maximum winter tempera-
ture (degrees centigrade) data with AO index as a covariate.

Northern Hemisphere temperature variability is the North Atlantic Oscillation-Arctic Oscil-
lation (NAO-AO). Therefore, we begin by investigating whether or not this parameter should
be included as a covariate in our GEV model for these data. It is generally a good idea to
begin with the location parameter. The following commands will perform this fit and display
various results.7

R> fit2 <- fevd(TMX1, PORTw, location.fun = ~ AOindex, units = "deg C")
R> plot(fit2)
R> plot(fit2, "trace")

Note that the diagnostic plots resulting from plot(fit2) are similar to those for fit1, but
now the first quantile-quantile and density plots are on the Gumbel transformed scale (the
data are transformed to a stationary sample) and the return level plot now displays the data
time series with “effective” return levels, which are the return levels that would be estimated
if the model were fixed at the parameter values for the specific covariate(s) used (cf. Gilleland
and Katz 2011, Figure 2).

7Warnings are not critical here, as sometimes the gradient log-likelihood is not defined. In such cases, finite
differences are used instead.
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2-year level 20-year level 100-year level
AO index = −1 15.05 20.26 22.47
AO index = 1 17.36 22.56 24.77

Table 2: Estimated “effective” return levels for the GEV df fitted to maximum winter tem-
perature (degrees centigrade) at Port Jervis, New York with AO index as a (linear) covariate
in the location parameter.

The fitted model location parameter estimate is µ̂(AO index) = 15.25 + 1.15AO index. That
is, the estimated parameters (standard errors) are µ̂0 ≈ 15.25 (0.36), µ̂1 ≈ 1.15 (0.32), as well
as σ̂ ≈ 2.68 (0.24) and ξ̂ ≈ −0.18 (0.07).
We can use the likelihood-ratio test again to test whether or not inclusion of the AO index
into the location parameter is statistically significant.

R> lr.test(fit1, fit2)

The test yields a very low p value (≈ 0.0005653) indicating that the null hypothesis of the
stationary model should be rejected. To obtain specific “effective” return levels, we must set
up an object that informs the return.level function about which covariate(s) choice(s) we
want to make. For example, the following code obtains “effective” return level estimates for
values when the AO index is −1 and 1.

R> v <- make.qcov(fit2, vals = list(mu1 = c(-1, 1)))
R> return.level(fit2, return.period = c(2, 20, 100), qcov = v)

It is useful to study the format of v, which is a matrix with columns named for the parameters
and an additional threshold column (with all NAs for the GEV df). Note that the location
parameter is modeled with two parameters in this case, so its names are mu0 and mu1. The
rows represent specific parameter values for each covariate. Columns of parameters that are
fixed have all ones. Results from running the above code are reproduced in Table 2.
It is also possible to incorporate covariates into other parameters. To investigate whether or
not AO index should be included as a covariate in the scale parameter, the following code
can be used.

R> fit3 <- fevd(TMX1, PORTw, location.fun= ~ AOindex,
+ scale.fun = ~ AOindex, units = "deg C")
R> lr.test(fit2, fit3)

The p value from the above likelihood-ratio test is on the order of 0.5 indicating that incor-
poration of the AO index to the scale parameter, in addition to the location parameter, is
not statistically significant. The likelihood-ratio test requires that the models be nested in
this way. We could also utilize the AIC or BIC, which could be applied regardless of whether
or not the models are nested. For fit2 (AO index in the location parameter) the AIC is
341.5984 and BIC is 350.4764. If we fit the model with AO index in only the scale parameter,
we get an AIC of 353.4567 and BIC of 362.3347, and note that varying the scale parameter
without varying the location parameter is generally not recommended. In each case, the AIC
and BIC both favor the model with AO index in the location parameter rather than the scale
parameter (lower values of AIC/BIC are better).
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If we want to fit a model with a log link function in the scale parameter, then we can modify
the previous code above by setting the use.phi argument to TRUE.

R> fit4 <- fevd(TMX1, PORTw, location.fun = ~ AOindex,
+ scale.fun = ~ AOindex, use.phi = TRUE, units = "deg C")

The above code fits a model with AO index as a covariate in the location parameter as before
and now incorporates the index in the scale parameter in a non-linear manner. Specifically,
σ(AO index) = exp (φ0 + φ1AO index). However, a check of the likelihood-ratio test against
the model with AO index in the location parameter only fails to reject the null hypothesis
(p value > 0.5).
It can sometimes be advantageous to use φ = log σ in the numerical optimization for models
without covariates in the scale parameter. This can easily be performed by setting the use.phi
argument to TRUE for those models, and results will be displayed for σ = expφ.

R> fevd(TMX1, PORTw, use.phi = TRUE)

Comparison of the above result with that of fit1 shows that the estimates (and their standard
errors) are nearly, but not quite, identical.

4. Threshold excess approach
To demonstrate the threshold excess approach, we will make use of the hurricane damage data
set available with extRemes (Pielke and Landsea 1998; Katz 2002). Figure 7 shows plots of
these data where the top right and bottom left panels are similar to Figures 3 and 4 in Katz
(2002).
Figure 7 can be reproduced in R with the following commands, where the qqnorm function
that allows for the confidence bands is contributed by Peter Guttorp.

R> data("damage", package = "extRemes")
R> par(mfrow = c(2, 2))
R> plot(damage$Year, damage$Dam, xlab = "Year",
+ ylab = "U.S. Hurricane Damage (billion USD)", cex = 1.25,
+ cex.lab = 1.25, col = "darkblue", bg = "lightblue", pch = 21)
R> plot(damage[, "Year"], log(damage[, "Dam"]), xlab = "Year",
+ ylab = "ln(Damage)", ylim = c(-10, 5), cex.lab = 1.25,
+ col = "darkblue", bg = "lightblue", pch = 21)
R> qqnorm(log(damage[, "Dam"]), ylim = c(-10, 5), cex.lab = 1.25)

Before fitting the GP df to the data, it is first necessary to choose a threshold. It is important
to choose a sufficiently high threshold in order that the theoretical justification applies thereby
reducing bias. However, the higher the threshold, the fewer available data remain. Thus, it is
important to choose the threshold low enough in order to reduce the variance of the estimates.
Different methods have been suggested for choosing the threshold. The extRemes package has
two main functions for diagnosing an appropriate choice: threshrange.plot and mrlplot.
The former repeatedly fits the GP df to the data for a sequence of threshold choices along
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Figure 7: Estimated economic damage caused by US hurricanes from 1926 to 1995. From
top left to bottom left: scatter plot of damage against year, scatter plot of log-transformed
damage against year and normal quantile plot of log damage with 95% confidence bands. The
last two are similar to Figures 3 and 4 in Katz (2002), but where all 144 values are shown
(Katz 2002 removed values below 0.01 billion USD).

with some variability information8 while the latter plots the mean excess values for a range of
threshold choices with uncertainty (cf. Coles 2001, Section 4.3.1). The code below produces
the plots in Figure 8. We also note that only seven values exceed 12 billion USD and only
five exceed 13 billion USD. Therefore, in order to ensure we have enough data and to more
easily interpret the mean residual life plot, we will restrict it to the range of zero to twelve.

R> threshrange.plot(damage$Dam, r = c(1, 15), nint = 20)
R> mrlplot(damage$Dam, xlim = c(0, 12))

The top row of panels shows the fitted (reparameterized) scale and shape parameters over
a range of twenty equally spaced thresholds from 1 billion USD to 15 billion USD; the scale
parameter, σ(u), is adjusted to σ∗, so that it is not a function of the threshold, by σ∗ =
σ(u)−ξu. From these plots, a subjective selection of 6 billion USD appears to yield estimates

8extRemes version ≥ 2.0 plots confidence intervals, where previously a multiple of the standard error was
used via ismev.
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Figure 8: Threshold selection diagnostic plots for the GP df fit to the US hurricane damage
data in Figure 7. Reparameterized scale parameter with 95% confidence limits over a range of
20 equally spaced thresholds from 1 billion USD to 15 billion USD (top left), shape parameter
with 95% confidence intervals for the same range of thresholds (top right), and the mean
residual life (mean excess) plot (bottom left) with dashed gray lines indicating the 95%
confidence intervals for the mean excesses.

that will not change much, within uncertainty bounds, as the threshold increases further,
while remaining low enough as to utilize as much of the data as possible.
The last panel of Figure 8 (bottom left) is often more difficult to interpret, but the idea
is to select a threshold whereby the graph is linear, again within uncertainty bounds, as the
threshold increases.9. Again, 6 billion USD appears to be a reasonable choice for the threshold
as a reasonably straight line could be placed within the uncertainty bounds from this point
up.
One additional consideration concerns the rate of exceeding the threshold. Although it is not
important for fitting the GP df to the data, it will come into play when calculating return
levels from the GP df. In order to obtain an estimate of the rate of exceeding 6 billion USD,

9The reason for checking for linearity is that if the GP df is valid for excesses of X1, . . . , Xn over a threshold
u0, then for u > u0, the GP is also valid for excesses ofX1, . . . , Xn over u subject to an appropriate change in the
scale parameter. Then, the mean for the GP df is given by E[X−u|X > u] = σ(u)/(1−ξ) = (σ(u0)+ξu)/(1−ξ),
which is a linear function of the threshold.
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Figure 9: Quantile-quantile plots for the GP df fit to the hurricane economic damage data.

we will make use of the time.units argument to fevd. Because the interest is in the annual
return level, we need to take into account the number of data points per year. From Figure 7,
it is clear that some years have more than one hurricane, and in fact, some years do not have
a hurricane. A reasonable solution is to use the average number of hurricanes per year.

R> range(damage$Year)
R> 1995 - 1926 + 1
R> dim(damage)
R> 144 / 70
R> fitD <- fevd(Dam, damage, threshold = 6, type = "GP",
+ time.units = "2.06/year")
R> plot(fitD)

Inspection of the diagnostic plots from the above code shows a large apparent “outlier” toward
the upper end (the devastating Greater Miami hurricane in 1926). But such behavior is fairly
common for the most extreme observation (in part because of considerable uncertainty), and
does not provide strong evidence against the validity of the assumptions for using the GP df. It
is possible to calculate probabilities from the model fit using the pextRemes function. Suppose,
for example, that we are interested in knowing the conditional probability of exceeding 20, 40,
60 and 100 billion US dollars in economic damage, given a hurricane whose damage exceeds
6 billion US dollars. The following line of code shows us that the estimates, according to the
fitted model, are about 0.16, 0.05, 0.02, and 0.01, respectively.

R> pextRemes(fitD, c(20, 40, 60, 100), lower.tail = FALSE)

For a second example, we will look at precipitation data from a rain gauge in Fort Collins,
Colorado, USA, which come from the Colorado Climate Center, Colorado State University



Journal of Statistical Software 21

Figure 10: Precipitation (inches) data in Fort Collins, Colorado, USA, against the time of
the observations in days (obs column of data frame, left) and against month (right). The
red circle indicates the value at this gauge on the day of the July 28, 1997, flooding event
that occurred in the area (though not near this particular rain gauge). In the data set, it is
associated with the date of July 29, 1997, because it is an accumulation over the 24 hours
prior.

and are analyzed in Katz et al. (2002). The data are available with extRemes by using
data("Fort", package = "extRemes") and plotted in Figure 10. From the plots, there is
no apparent long-term trend over time, but some seasonality in extremes exists. A flooding
event occurred in this area on July 28, 1997, though not in the precise vicinity of this particular
rain gauge.
As in the hurricane damage example above, it is first necessary to determine a threshold in
order to fit the GP df to these data. Figure 11 shows the results of the code below.

R> threshrange.plot(Fort$Prec, c(0.01, 2), nint = 30)

As always, it is a somewhat subjective decision as to what is an appropriate threshold choice.
However, the two parameters do not seem to vary substantially, and within uncertainty
bounds, beyond about 0.395 inches. The following code fits first a stationary model and
then a model that incorporates the seasonality evidenced by Figure 10 (right). It is not
necessary to specify the time.units argument for these data because the data are recorded
daily, yielding approximately 365.25 days per year, which is the default assumption for fevd.

R> fitFC <- fevd(Prec, Fort, threshold = 0.395, type = "GP")
R> plot(fitFC)
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Figure 11: Results from fitting the GP df to the Fort Collins, Colorado, USA precipitation
data from Figure 10 over a range of thresholds.

R> fitFC2 <- fevd(Prec, Fort, threshold = 0.395, scale.fun =
+ ~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),
+ type = "GP", use.phi = TRUE, units = "inches")
R> plot(fitFC2)
R> lr.test(fitFC, fitFC2)

The object fitFC2 models the scale parameter as

σ(t) = exp (φ0 + φ1 cos(2π · t/365.25) + φ2 sin(2π · t/365.25)) , t = 1, 2, . . . , 365. (13)

The result of the likelihood-ratio test yields a very small p value (≈ 5.22×10−6) indicating that
the addition of the seasonality terms are statistically significant. We can obtain 95% profile-
likelihood confidence intervals for the parameter φ1 (the second parameter in the fitted object)
and φ2 (the third parameter) in fitFC2 using the ci method function. Specifying verbose to
be TRUE gives some progress information on the screen, but also creates the profile-likelihood
plot. The xrange argument was determined by trial and error. The resulting profile-likelihood
plots are displayed in Figure 12.

R> ci(fitFC2, type = "parameter", which.par = 2, method = "proflik",
+ xrange = c(-0.5, 0.01), verbose = TRUE)



Journal of Statistical Software 23

−0.5 −0.3 −0.1

−
82

−
80

−
78

−
76

−
74

phi1

P
ro

fil
e 

Lo
g−

Li
ke

lih
oo

d

−0.10 0.00 0.10 0.20

−
80

−
78

−
76

−
74

phi2

P
ro

fil
e 

Lo
g−

Li
ke

lih
oo

d

Figure 12: Profile-likelihood plot for parameters φ1 (left) and φ2 (right) in the GEV df fit to
Fort Collins precipitation data with a fixed threshold of 0.395 and seasonal variation in the
scale parameter according to Equation 13.

R> ci(fitFC2, type = "parameter", which.par = 3, method = "proflik",
+ xrange = c(-0.1, 0.2), verbose = TRUE)
R> ci(fitFC2, type = "parameter")

Although zero falls in the 95% confidence interval for φ2 (−0.01, 0.18), it is really just a
trigonometric “trick” to re-express a single sine wave with unknown phase and amplitude so
that a linear model can be obtained instead of a non-linear one. We will keep the second term
in our subsequent analysis.
Now that we have a reasonable model selected, we may be interested in the probability of
exceeding 4.63 inches (the value that occurred at this rain gauge on July 29, 1997). For
illustrative purposes we will also find the probability of exceeding 1.54 inches (the value that
occurred at this rain gauge the day before the flooding event). Because the model contains
covariate information in the parameters, care must be taken when calling pextRemes. It is
necessary to tell pextRemes the desired values of the covariates for which to calculate the
probability.

R> v <- matrix(1, 730, 5)
R> v[, 2] <- cos(2 * pi * rep(1:365 / 365.25, 2))
R> v[, 3] <- sin(2 * pi * rep(1:365 / 365.25, 2))
R> v[, 5] <- 0.395
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R> v <- make.qcov(fitFC2, vals = v, nr = 730)
R> FCprobs <- pextRemes(fitFC2, q = c(rep(1.54, 365), rep(4.63, 365)),
+ qcov = v, lower.tail = FALSE)

Alternatively, it is possible to calculate the scale parameter value for our covariate(s) of
interest, and use pevd to find the probabilities. However, they must be calculated for one
value of the scale parameter at a time. Below it is shown how to do this for the 29th of July
(the day of the year for which the highest amount (4.63 in) occurred, which corresponds to
the 210th day of the year assuming 28 days for February.

R> phi <- -1.24022241 - 0.31235985 * cos(2 * pi * 1:365 / 365.25) +
+ 0.07733595 * sin(2 * pi * 1:365 / 365.25)
R> sigma <- exp(phi)
R> pevd(c(1.54, 4.63), scale = sigma[210], shape = 0.177584305,
+ threshold = 0.395, type = "GP", lower.tail = FALSE)

For the GP df, it is not clear how to interpret these probabilities because the rate of exceeding
the threshold may also vary seasonally, but cannot be modeled under the current framework.
One possible solution is to employ a PP model instead, as will be discussed in the next section.
It is also possible to vary the threshold in addition to (or instead of) the scale parameter. For
example, the following code fits a GP df with a varying threshold.

R> u <- numeric(dim(Fort)[1])
R> u[ is.element(Fort$month, c(1, 2, 11, 12))] <- 0.395
R> u[ is.element(Fort$month, c(3, 4, 9, 10))] <- 0.25
R> u[ is.element(Fort$month, 5:8) ] <- 0.895
R> fitFC3 <- fevd(Prec, Fort, threshold = u, scale.fun =
+ ~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),
+ type = "GP", verbose = TRUE)
R> plot(fitFC3)

5. Point process approach
Fitting the GP df to excesses over a high threshold and also estimating the frequency of
exceeding the threshold by fitting a Poisson distribution is sometimes referred to as the
orthogonal approach to estimating the PP, or Poisson-GP model. An alternative way to
estimate the PP is to estimate both the frequency and intensity df’s simultaneously in a
single model framework by optimizing the likelihood given in Equation 12. Such a modeling
approach is sometimes referred to as a two-dimensional PP.

R> fit <- fevd(Prec, Fort, threshold = 0.395, type = "PP",
+ units = "inches", verbose = TRUE)
R> plot(fit)
R> plot(fit, "trace")
R> ci(fit, type = "parameter")
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fevd(x = Prec, data = Fort, threshold = 0.395, type = "PP", units = "inches",     verbose = TRUE)

Figure 13: Diagnostic plots from fitting a PP model to the Fort Collins, Colorado precipitation
data set. See text for an explanation of the plots.

Figure 13 shows the results for the first plot command above. The top two quantile-quantile
plots are those of the corresponding GP df so that only data exceeding the threshold are
shown. The density plot (first column second row), on the other hand, shows the density
for the equivalent GEV df (i.e., the fitted two-dimensional PP parameterized in terms of the
GEV df) so that the empirical density shown as the solid black line in the figure is for block
maxima data where the function attempts to find the block maxima10 from user input in the
original fitted object; the fit appears to be reasonable, especially considering that these are
not the data to which the model is being fitted, and the GEV df is not being directly fitted
to them. For non-stationary models, the density plot is not provided.
The next diagnostic plot (labeled Z plot) is a quantile-quantile plot first proposed by Smith
and Shively (1995) (the upper left quantile-quantile plot was also proposed there). the Z plot
is created in the following manner. First, for observations beginning at time T0, the times

10The function uses the span and npy values of the fitted object in order to find the block maxima. That
is, a vector of integers from 1 to span, each repeated npy times, is created, and the maximum of the data is
found from this stratification. If npy and/or span is not an integer, then it is rounded to the nearest integer
value. If the stratification vector is longer than the original data, it is simply truncated to be the same length.
If it is shorter than the original data, then the final stratification is extended to the length of the data.
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when the data exceed the high threshold, Tk, k = 1, 2, . . . are obtained, and the Poisson
parameter (which may vary with time t) are integrated from exceedance time k − 1 to k to
give the random variables

Zk =
∫ Tk

Tk−1
λ(t)dt =

∫ Tk

Tk−1
{1 + ξ(t)(u− µ(t))/σ(t)}−1/ξ(t) dt, k ≥ 1. (14)

By construction, the random variables Zk should be independent exponentially distributed
with mean 1, and the quantile-quantile plot of Zk against the expected quantile values from
a mean-one exponential df allows for a diagnostic test of this assumption. The Z plot in Fig-
ure 13 is an example of such a quantile-quantile plot for the fit to the Fort Collins precipitation
data. In this case, the plot suggests that the assumptions for the PP model are not met; in
particular, that the mean waiting time between events does not follow a mean one exponen-
tial df. For the present example, it turns out that while the threshold of 0.395 may be high
enough to adequately model the threshold excesses, it may be too low to model the frequency
of occurrence. A possible solution for this case (not shown) is to increase the threshold; e.g.,
a threshold of 2 inches has been found to yield a fairly straight Z plot. However, 2 inches is
too high if considering other aspects, such as modeling seasonality.
Similar to the density plot, the return level plot (lower right panel) estimates the block
maxima from the fitted object and uses the equivalent GEV representation to estimate them
for annual maxima.
With the PP model, we now have a threshold to choose, as well as location, scale and shape
parameters to estimate, any of which can incorporate covariate information just as with the
block maxima and threshold excess approaches.
Sometimes interest is in minima or deficits under a low threshold rather than maxima and
excesses over a high threshold. Although slightly more complicated, the same theory applies
because of the relation min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn} and similarly for deficits
under a low threshold. For example, the Phoenix minimum temperature data (Figure 14)
included with extRemes, data("Tphap", package = "extRemes"), is of interest because of
the urban heat island effect, which is well known to be greater for minimum temperature than
for maximum temperature. The data were provided by the US National Weather Service
Forecast office at the Phoenix Sky Harbor Airport, and represent maximum (MaxT) and
minimum (MinT) daily temperature in degrees Fahrenheit for the summer months of July
through August 1948 to 1990 (Balling, Skindlov, and Phillips 1990; Tarleton and Katz 1995).
Although it may be prudent to vary the threshold, given the clear increasing trend over time,
we begin by fitting a fixed stationary PP model to the (negative) minimum temperature data.
As before, to help select a threshold, we can use the following code. Because of the discrete
nature of the data, we use thresholds chosen to be between integer values in order to minimize
the effect on the GP fit.

R> threshrange.plot(-Tphap$MinT, r = c(-75.5, -68.5), nint = 20, type = "PP")

Inspection of the plots in Figure 15 suggests that a threshold of −73 for the fixed stationary
model would be appropriate. Next, note that there are 62 days (observations) per year
included in the dataset.

R> fit1 <- fevd(-MinT ~ 1, Tphap, threshold = -73, type = "PP",
+ units = "deg F", time.units = "62/year", verbose = TRUE)
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Figure 14: Summer (July through August) minimum temperature (deg. Fahrenheit) at
Phoenix Sky Harbor Airport from 1948 to 1990. Yellow dashed line is a regression line
fit to the data.

R> plot(fit1)
R> plot(fit1, "trace")

The diagnostic plots display results for the negative transformation of minimum temperature.
As expected, the plots suggest that our assumptions for using the PP model are not met.
From Figure 14, it appears practical to incorporate a linear trend into the threshold. The code
below uses the threshold model u(year) = −68− 7(year− 48)/42 (orange line in Figure 16).

R> fit2 <- fevd(-MinT ~ 1, Tphap, threshold = c(-68,-7),
+ threshold.fun = ~ I((Year - 48)/42), location.fun = ~ I((Year - 48)/42),
+ type = "PP", time.units = "62/year", verbose = TRUE)
R> plot(fit2)

Examination of Figure 16, suggests that the data may be dependent even over the threshold,
which may impact uncertainty information (not shown) pertaining to parameter and return
level estimates. We take this issue up in Section 6. A further problem is the Z plot (not
shown), which shows that the assumptions for the frequency part of the model are not met.
In this case, increasing the threshold does not help. However, it will be shown that accounting
for the dependence above the threshold solves the problem for this example.
Suppose we want to compare the 100-year “effective” return level estimates between, say 1952
(i.e., the fifth year) and 1988 (year 41) along with confidence intervals. We can do this in the
following manner.

R> v1952 <- make.qcov(fit2, vals = list(mu1 = (5 - 48) / 42))
R> v1988 <- make.qcov(fit2, vals = list(mu1 = (41 - 48) / 42))
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Figure 15: PP model fit to the (negative) minimum temperature data from Figure 14 over a
range of thresholds.

R> return.level(fit2, return.period = 100, do.ci = TRUE, qcov = v1988,
+ qcov.base = v1952)

Recalling that the model is fit to the negative of minimum temperature, the above code tells
us that the estimated difference in “effective” return levels (95% confidence interval based
on the normal approximation) between 1988 and 1952 is about 7.23 (6.07, 8.39) degrees
centigrade. With zero not contained in the interval, this result suggests that the 100-year
return level of annual minimum temperature has risen, with statistical significance at the
5% level, on the order of seven degrees centigrade between 1952 and 1988. Of course, it is
possible using the code to obtain “effective” return level values for any arbitrary year into the
future, but caution should be exercised in practice concerning whether or not it is believable
for the upward linear trend in minimum temperatures to continue to be valid. Generally, it
is ill-advised to extrapolate such a statistical trend beyond the range of the data.
Next, we continue with the Fort Collins precipitation example. Recall that we had fit a
GP df to these data, and found that inclusion of a seasonally varying covariate in the scale
parameter was significant. The following fits a PP model to the data first without any
covariates and then with a seasonally varying location parameter, as well as for seasonally
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Figure 16: “Effective” return levels for negative summer minimum temperature (deg. Fahren-
heit) at Sky Harbor Airport.

varying scale parameter; along with a likelihood-ratio test for the inclusion of the seasonally
varying covariate.

R> fitFCpp <- fevd(Prec, Fort, threshold = 0.395, type = "PP")
R> fitFCpp2 <- fevd(Prec, Fort, threshold = 0.395, location.fun =
+ ~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),
+ type = "PP", units = "inches")
R> fitFCpp3 <- fevd(Prec, Fort, threshold = 0.395, location.fun =
+ ~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),
+ scale.fun = ~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),
+ type = "PP", use.phi = TRUE, units = "inches")
R> lr.test(fitFCpp, fitFCpp2)
R> lr.test(fitFCpp2, fitFCpp3)

The p value for the likelihood-ratio statistic comparing the stationary fit to the one that
incorporates seasonality into the location parameter is less than 2.2 × 10−16, which implies
that the inclusion of seasonality in this parameter is significant, as expected. The additional
inclusion of seasonality into the scale parameter is also highly significant suggesting that the
model with seasonality in both terms should be preferred. Note that we do not fit a model
with seasonally varying scale parameter without also varying the location parameter because
the concept of the scale parameter depends on the location parameter.
It is possible to calculate probabilities of exceeding a specified amount for any particular
value(s) of the covariates. Below, we calculate the probability of exceeding 1.54 inches for
each day of a year, along with the effective 100-year return levels (with 95% confidence
intervals based on a normal approximation).
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Figure 17: Fort Collins daily precipitation (inches) with effective 100-year return levels from
PP model fit with seasonally varying location and scale parameters.

R> v <- make.qcov(fitFCpp3, vals = list(
+ mu1 = cos(2 * pi * 1:365 / 365.25), mu2 = sin(2 * pi * 1:365 / 365.25),
+ phi1 = cos(2 * pi * 1:365 / 365.25), phi2 = sin(2 * pi * 1:365/365.25)))
R> v[1:10, ]
R> p1.54 <- pextRemes(fitFCpp3, rep(1.54, 365), lower.tail = FALSE, qcov = v)
R> ciEffRL100 <- ci(fitFCpp3, return.period = 100, qcov = v)

To see how the PP model varies during the year, we can plot the above results using the code
below.

R> plot(Fort$tobs, Fort$Prec, ylim = c(0, 10), xlab = "day",
+ ylab = "Fort Collins Precipitation (inches)")
R> lines(ciEffRL100[, 1], lty = 2, col = "darkblue", lwd = 1.25)
R> lines(ciEffRL100[, 2], col = "darkblue", lwd = 1.25)
R> lines(ciEffRL100[, 3], lty = 2, col = "darkblue", lwd = 1.25)
R> legend("topleft", legend = c("Effective 100-year return level",
+ "95% CI (normal approx)"), col = "darkblue", lty = c(1, 2),
+ lwd = 1.25, bty = "n")

Figure 17 shows the results from the code above, where it can be seen that the peak is in
July.

6. Dependent sequences
One way to check whether or not there exists temporal dependence in threshold excess data
is to look at the auto-tail dependence function plot (Reiss and Thomas 2007, Equations 2.65
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Figure 18: Auto-tail dependence function for Phoenix Sky Harbor (negative) minimum tem-
perature (Figure 14) using the upper 0.99 quantile. On the top is the function based on
ρ̂ (Reiss and Thomas 2007, Equation 2.65), and on the bottom it is based on ˆ̄ρ (Reiss and
Thomas 2007, Equation 13.28).

and 13.28). Here, we will use the Phoenix Sky Harbor data as an example. Such a graphic can
be made using extRemes by way of the atdf function. It is necessary to specify a threshold
in the form of a quantile (between zero and one) that should be high enough to capture only
the extremes, but low enough to include sufficient data.

R> atdf(-Tphap$MinT, 0.99)

Inspection of Figure 18 suggests that auto tail dependence exists in this series as the first
few lags have estimated coefficients well above 1 − 0.9 = 0.1 and zero, respectively. One
issue that presents itself in the figure is the presence of numerous values equal to −1, which
may be caused by seasonality, which is being ignored here. It is also possible to estimate the
strength of tail dependence using the function extremalindex. For this, we will use the same
non-constant threshold as applied in the last example of the previous section. Two methods
are available for estimating the extremal index: intervals (default; Ferro and Segers 2003)
and runs (Coles 2001). The former method also estimates the optimal run length for runs
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Figure 19: De-clustered (negative) Phoenix minimum temperature data (Figure 14) by runs
declustering with a run length of 1. Vertical blue lines represent groups in which declustering
was performed and each new group forces the start of a new cluster. Gray symbols above the
threshold indicate that the value is replaced to that of the threshold (i.e., will not be used in
estimating the EV df parameters).

declustering (an approach for handling tail dependence when estimating threshold excess and
PP models).

R> extremalindex(-Tphap$MinT, -68 - 7 * (Tphap$Year - 48) / 42)

The above code yields an estimated extremal index of about 0.40, which is suggestive of strong
tail dependence (in agreement with our findings in Figure 18). It also shows that there are
sixty clusters with an estimated run length of about 5. Now that we have evidence of tail
dependence, it is prudent to account for such dependence in our analysis. One way to do so
is to try to remove the dependence by declustering the excesses. This can be done using the
decluster function. Recall that the data is for summer months only, so it does not make
sense to decluster data that cross over years. Therefore, we use the groups argument to
specify that we want the decluster procedure to apply within each year only.

R> y <- -Tphap$MinT
R> u <- -68 - 7 * (Tphap$Year - 48) / 42
R> grp <- Tphap$Year - 47
R> look <- decluster(y, threshold = u, groups = grp)
R> look
R> plot(look)

The above code used runs declustering (default) with a run length of 1. It is also possible to
decluster according to the intervals method proposed by Ferro and Segers (2003), which is a
method for estimating the run length, and then applying runs declustering.
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Figure 20: Auto-tail dependence function for the declustered series from Figure 19.

R> look2 <- decluster(y, threshold = u, method = "intervals", groups = grp)
R> look2
R> plot(look2)

Note that now a run length of 5 is used, which we could have provided in our first decluster
because we had already estimated the run length to be 5 from the intervals method when we
called extremalindex. Note that the new extremal index estimate is around 0.78, indicating
that the declustered series is not as strongly dependent in the tails. The new series contained
in the object look2 can be applied directly to other functions as it is a kind of vector object.
For example, we can check the auto-tail dependence plot.

R> atdf(look2, 0.99)

The declustered data show considerably less, if any, tail dependence; although the seasonality
issue remains. It is possible to use the object look2 directly in a new call to fevd, which is
shown below. Note that even though fevd generally prefers a data frame object to be passed,
it is possible to run it without such an object, which is how it is called below. In order to
allow for a varying threshold without a data frame object, we must first create a vector of
the values rather than simply supplying a formula as done previously.
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R> u <- (Tphap$Year - 48) / 42
R> u <- -68 - 7 * u
R> fitDC <- fevd(y, data = data.frame(y = c(look), time = 1:2666),
+ threshold = u, location.fun = ~ time, type = "PP",
+ time.units = "62/year")
R> plot(fitDC)

Note the use of c(look2) in the above code. The c function removes all of the attributes
associated with the declustered object so that it can be entered into a data frame object.
Inspection of the plot produced above (not shown) shows that the Z plot is now considerably
straighter, although it appears that some issues may remain.
The Z plot (and qq-plot) can be re-created with the internal function eeplot. The following
code demonstrates this procedure, and also plots the Zk (andWk; i.e., the transformed values
to the standard exponential scale from the qq-plot) values against the times of exceeding the
threshold. This latter plot can diagnose if there are any trends in time. For brevity, we do
not show these plots here, but no apparent trends through time are evident.

R> par(mfrow = c(2, 2))
R> tmp <- eeplot(fitDC)
R> plot(tmp)

7. Dependence in extremes between two variables
In the previous section, tail dependence was investigated for a single variable over time. Simi-
lar analyses are available in extRemes when determining whether or not two variables are tail
dependent. The primary functions for this type of analysis are taildep and taildep.test.
As an example, we will simulate two highly correlated normally distributed series, and then
check to see if they are strongly dependent in their tails or not.

R> z <- matrix(rnorm(2000), ncol = 2)
R> rho <- cbind(c(1, 0.9), c(0.9, 1))
R> rho <- chol(rho)
R> t(rho) %*% rho
R> z <- t(rho %*% t(z))
R> cor(z[, 1], z[, 2])
R> plot(z[, 1], z[, 2])
R> taildep(z[, 1], z[, 2], 0.99)
R> taildep.test(z[, 1], z[, 2])

8. Advanced

8.1. Optimization options

Sometimes it is helpful to modify the default arguments to the numerical optimization rou-
tines. This can be done in fevd by way of the optim.args argument. Here, we switch to
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the "BFGS" method and use finite differences instead of the exact gradients in our fit to the
negative of the minimum temperature data at Phoenix Sky Harbor Airport.11

R> fit <- fevd(-MinT ~ 1, Tphap, threshold = -73, type = "PP",
+ units = "deg F", time.units = "62/year", use.phi = TRUE,
+ optim.args = list(method = "BFGS", gr = NULL), verbose = TRUE)

8.2. Super-heavy tails

The asymptotic results that provide justification for use of the extreme value distributions do
not guarantee that a non-degenerate limiting df exists for any given random variable. One
example is the case of a random variable that follows a df with a super-heavy tail. The
following code demonstrates one way of drawing a random sample from a super-heavy tail df,
and results from attempting to fit these draws to a GP df.

R> z <- revd(1000, loc = 2, scale = 1.5, shape = 0.2)
R> z <- exp(z)
R> hist(z)
R> hist(z[z < 1000])
R> threshrange.plot(z)
R> fitZ <- fevd(z, threshold = exp(8), type = "GP")
R> plot(fitZ, "qq")
R> threshrange.plot(log(z))
R> fitlZ <- fevd(log(z), threshold = 8, type = "GP")
R> plot(fitlZ, "qq")

Quantile-quantile plots for one realization of data simulated from the procedure above are
displayed in Figure 21. In each case, the plots are for quantiles of a random draw from the
GP df fit to the simulated z data against those for the actual simulated data z. Clearly,
the fit to the data shown on the right (the same as the left, but after having taken the log
transformation), is better. The data set simulated above is an example of data that follow
a log-Pareto df (cf. Reiss and Thomas 2007; Cormann and Reiss 2009). In particular, z is
simulated by drawing a random sample from a Pareto-type (ξ > 0) df, and then exponentiating
the result.
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