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[1] In the past, the concepts of return levels and return periods have been standard and
important tools for engineering design. However, these concepts are based on the
assumption of a stationary climate and do not apply to a changing climate, whether local or
global. In this paper, we propose a refined concept, Design Life Level, which quantifies risk
in a nonstationary climate and can serve as the basis for communication. In current practice,
typical hydrologic risk management focuses on a standard (e.g., in terms of a high quantile
corresponding to the specified probability of failure for a single year). Nevertheless, the
basic information needed for engineering design should consist of (i) the design life period
(e.g., the next 50 years, say 2015–2064); and (ii) the probability (e.g., 5% chance) of a
hazardous event (typically, in the form of the hydrologic variable exceeding a high level)
occurring during the design life period. Capturing both of these design characteristics, the
Design Life Level is defined as an upper quantile (e.g., 5%) of the distribution of the
maximum value of the hydrologic variable (e.g., water level) over the design life period.
We relate this concept and variants of it to existing literature and illustrate how they, and
some useful complementary plots, may be computed and used. One practically important
consideration concerns quantifying the statistical uncertainty in estimating a high quantile
under nonstationarity.

Citation: Rootz�en, H. and R. W. Katz (2013), Design Life Level: Quantifying risk in a changing climate, Water Resour. Res., 49,
doi:10.1002/wrcr.20425.

1. Introduction

[2] In this paper, we discuss how risk quantification
should be altered to meet the challenges posed by global
climate change [Solomon et al., 2007], and by local climate
changes caused by shifts in land use or other anthropogenic
influences. We believe this discussion is long overdue, and
that it merits much more attention than it has received so
far. The setting is adaptation: how should one modify
design practice so that it can cope with climate changes?

[3] Risk handling always requires a compromise
between risk avoidance and cost. The goal of this paper
was to contribute a concept, Design Life Level, which is
convenient for quantifying and communicating environ-
mental risk in a changing climate. It can be viewed as an
extension to nonstationarity of the concept of ‘‘risk of fail-
ure’’ [Fernandez and Salas, 1999; Jakob, 2013; Rosbjerg
and Madsen, 1998], often advocated to more effectively
communicate the risk of hydrologic extremes under statio-
narity [e.g., Kunreuther et al., 2013; Michel-Kerjan and
Kunreuther, 2011]. Note that we use the term ‘‘risk’’ in its
nontechnical sense to refer to the probability of an extreme

event whose consequences would be substantial, and not in
its technical sense in risk analysis, where risk commonly
refers to expected loss.

[4] At present, design criteria for environmental loads on
structures, such as dikes, dams, sewers, or bridges, are
based on the (in a stationary climate equivalent) concepts
of return levels, return periods, and annual chance of
exceedance. To exemplify, the 10,000 year return flood
level, as used, for example, in dike design in the Nether-
lands [Botzen et al., 2009], is the flood level that on average
is exceeded once every 10,000 years; and the correspond-
ing annual chance of exceedance, of course, is 1/10,000.
Similarly, the 300 m3=s stream-flow return period is the
time it takes, on average, between the occurrence of two
stream flows in excess of 300 m3=s (as used, e.g., in Swed-
ish regulation, see Svensk Energi et al. [2007]).

[5] In a stationary climate, these concepts answer many
of the basic questions (see section 2). They have served us
well as design tools in the past. However, these concepts
are based on the assumption of stationarity and do not
apply to a nonstationary environment [see Milly et al.,
2008].

[6] For example, think of a flood return level, which on
average would be exceeded once in 100 years under the hy-
pothetical assumption that climate continues to be as it is in
2015, in a statistical sense (termed in a ‘‘2015 climate’’). In
a nonstationarity world, this level might instead be
exceeded on the average once every 90 years in a 2065 cli-
mate, and in a 2100 climate, once every 70 years. A con-
struction that is planned to be in service from 2015 to 2064
will necessarily encounter different risks than a similar
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construction did during 1961– 2010, and a construction that
is in operation from 2065 to 2114 would encounter still
other risks. This behavior cannot be captured using the
inherently stationary concept of return levels, and risks can-
not be sensibly evaluated if one only knows the length of
the projected lifetime of a construction: to assess risks, one
must also specify during which years the construction is
planned to be in service.

[7] We recognize that current hydrologic risk manage-
ment under the assumption of stationarity tends to focus on
a standard (e.g., in terms of a high quantile corresponding
to the specified probability of failure for a single year
[Institute for Water Resources, 2011]). Nevertheless,
implicit in this practice is a risk of failure over a relevant
time period much longer than a year (e.g., the probability
of at least one flood over the lifetime of a structure). For
example, Institute for Water Resources [2011, p. vi] states
that ‘‘... decision-making will ideally occur within a water-
shed framework and consider lifecycle aspects.’’ Further, a
main concern for Institute for Water Resources [2011], and
for much current work, is the impact of climate change.
Nevertheless, methods for risk quantification under nonsta-
tionarity are lacking (e.g., as noted by Cooley [2013],
Khaliq et al. [2006], and Salas and Obeysekera [2013]).

[8] In a changing climate, risk assessment instead should
include both a specification of the period of time when the
construction will be in use, the design life period, and of
the probability of exceeding a hazardous level during this
period. Although some aspects of water resources manage-
ment could continue to be based on an annual chance of
occurring, adapting to its change from one year to the next,
this would not be practicable for many design problems
(i.e., akin to redefining the flood plain on an annual basis).

[9] Besides Design Life Level, we also discuss a variant,
termed Minimax Design Life Level, which focuses on the
largest exceedance risk for any year of the design life pe-
riod. Further, the Risk Plots and Constant Risk Plots, as
introduced below, may be used to follow how risk changes
with time.

[10] These concepts are statistical, but still, in addition to
observational data, can also be based on projections of
future climate change from the outputs of climate experi-
ments using numerical models of the climate system (pro-
vided, of course, the uncertainties inherent in such
projections are taken into account). They are general in na-
ture, and different methods and statistical models can be
used to compute them, although it would be natural to pre-
fer those based on statistical extreme value theory.

[11] It is not within the scope of this paper to discuss the
extent of local or global climate change (although some of
the papers reviewed in section 3 do so). The aim is just at
what should be done, conceptually, if one believes that
risks are influenced by nonstationarity.

[12] Section 2 provides background on return levels and
return periods in a stationary environment. Section 3
reviews and discusses some literature on quantifying risk in
a nonstationary environment. Section 4 introduces the con-
cepts of Design Life Level and Minimax Design Life Level
and the risk plots. In section 5, we use two examples, high-
est daily rainfall at Manjimup, Western Australia, during
the winter wet season, and extremely warm winters (in
terms of high minimum winter temperatures) in Fort Col-

lins, Colorado, to illustrate how one can apply Extreme
Value Statistics to estimate Design Life Level and the other
risk concepts. As are return periods and return levels, these
measures are subject to statistical parameter uncertainty
due to limited samples, and to structural uncertainty caused
by imperfect understanding of how well models fit reality.
This issue is discussed in section 6. The final section, sec-
tion 7, contains a summary and discussion. A more techni-
cal subject, how to use the delta method to estimate
statistical uncertainty, is treated in Appendix A.

2. Background: Return Levels and Return
Periods in a Stationary Climate

[13] Let F(x) be the cumulative probability distribution
function (cdf) of the quantity of interest, say, the largest
daily rainfall in a year (in a stationary climate, this distribu-
tion is the same for all years). The T-year return level for
daily rainfall uT is defined to be the (1–1/T)-th quantile of
the distribution of the maximum daily rainfall in a year.
Equivalently, on average, one out of T years has at least
one daily rainfall that exceeds ut, so that T 1� F uTð Þð Þ ¼ 1.
Again equivalently, the probability is 1/T that the annual
maximum daily rainfall exceeds uT in a year.

[14] If one further assumes that the sizes of the largest
daily rainfalls in different years are independent, then the
probability that at least one rainfall exceeds uT in a period
of N years is

1� F uTð ÞN ¼ 1� 1� 1� F uTð Þð Þð ÞN ¼ 1� 1� 1

T

� �N

: ð1Þ

[15] So, by just specifying T, one can compute the proba-
bility of exceeding of uT in a time period of length N, for
any N. It is this quantity that has been termed ‘‘risk of fail-
ure’’ in the context of hydrologic engineering under statio-
narity [Fernandez and Salas, 1999].

[16] The return period for a rainfall of size u is the
expected waiting time (in years) until a daily rainfall larger
than u occurs. In a stationary climate, and assuming inde-
pendence, this waiting time is geometrically distributed with
parameter 1� F uTð Þ, so the T-year return level uT has return
period T ¼ 1= 1� F uTð Þð Þ, as intended [Lloyd, 1980].

3. Nonstationary Risk Measures

[17] In this section, we review and discuss the quite lim-
ited, existing literature on risk in a nonstationary
environment.

3.1. Frequency-Based Concept

[18] Laurent and Parey [2007] (see also Parey et al.
[2007, 2010]) define the 100-year return level ‘‘as a value
reached or exceeded in expectation 1 day over the hot sea-
son days of the next 100 years,’’ and, hence, in our termi-
nology, consider the design life period 2001–2100. If we
let Ft xð Þ be the cdf of the maximum temperature in year t,
then this definition of the 100-year return level u100 hence
is the value of u, which solves the equation
1� F2001 uð Þð Þ þ . . . þ 1�ð F2100 uð ÞÞ ¼ 1.

[19] However, return levels of this kind fix the exceed-
ance probability at the same time as they fix the design life
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period. Specifically, assuming independence, the probabil-
ity that the maximum temperature during this century will
exceed u100 is

1� F2001 u100ð Þ � � � � � F2100 u100ð Þ Þ
� 1� e� 1�F2001 u100ð Þð Þþ ... 1�F2100 u100ð Þð Þ¼1�e�1�0:63;ð ð2Þ

where the approximations typically are quite accurate.
[20] Thus, the frequency-based concept always leads to

an exceedance probability that is approximately 0.63. How-
ever, a 63% risk of an exceedance during the design life pe-
riod may be quite high in many cases, and is completely
unacceptable if an exceedance leads to a catastrophe. For
realistic engineering design, one needs a more flexible con-
cept, such as the one introduced in section 4.

3.2. Waiting Time–Based Concept

[21] The aim of Olsen et al. [1998] is the same as for the
present paper. Continuing the work of Wigley [1988], Olsen
et al. propose that one uses return periods, defined as the
expected waiting time until an exceedance, as the risk mea-
sure. In a list of three possible design criteria, the authors
also in passing write, ‘‘The first possible criterion is to
ensure that the structure provides protection in all years for
at least a 100-year flood (1/probability¼ 0.01).’’ Since
these 100 year floods are computed under the hypothesis
that the climate of the year in question continues indefi-
nitely, this might be close to our Minimax Design Life
Level as defined below.

[22] It is tempting to use the concept of return period,
defined as expected waiting time, also in a changing cli-
mate, since the definition itself carries over without any
change. However, this approach has two major drawbacks:
(i) for a nonstationary climate, the expected waiting time is
a quite imprecise description of the probability distribution
of the waiting time (for a stationary climate, as discussed
above, the return period, however, determines the distribu-
tion), and (ii) return periods depend on the development
also after the design life period is over, but this develop-
ment is less relevant.

3.3. Other Concepts

[23] Vogel et al. [2011] persuasively argue that there is
nonstationarity in peak streamflows in many watersheds
in the U.S. due to ‘‘a variety of anthropogenic processes
including changes in land use, climate, and water use,
with likely interactions among those processes making it
very difficult to attribute trends to a particular cause’’ (in
fact, once the effects of other processes are removed,
Villarini et al. [2009] do not find strong evidence of
trends due to global climate change). To quantify
changes, the authors use ‘‘a decadal flood magnification
factor, which is defined as the ratio of the T-year flood in
a decade to the T-year flood today’’ and ‘‘obtain flood
magnification factors in excess of 2–5 for many regions
of the United States.’’ The paper also introduces ‘‘a
recurrence reduction (RR) as average time between floods
in some future year tf associated with the flood with an
average recurrence interval of T0 in some reference year
to.’’ Again these concepts seem quite useful as a way to
illustrate the effects of nonstationarity, but are not
directly relevant for design.

[24] The book chapter Cooley [2013] aims at risk com-
munication, and in particular also contains a discussion of
the concepts proposed in Parey et al. [2010] and Olsen et
al. [1998]. Consistent with our proposed risk measure,
Salas and Obeysekera [2013] examined the behavior of the
risk of failure under nonstationarity.

4. Risk Measure for a Changing Climate

[25] In this section, we propose Design Life Level as a
measure to quantify risk for the purpose of engineering
design in a changing climate. We also discuss Minimax
Design Life Level, and the use of Risk Plots and Constant
Risk Plots. Design Life Level aims to achieve a desired
probability of a hazardous exceedance (or risk of failure)
during the design life period. Minimax Design Life Level
is closely related, and complementary, but instead focuses
on the maximal yearly probability of exceedance during the
design life period. The Risk Plot specifies the time distribu-
tion of risk, whereas the Constant Risk Plot has a somewhat
different focus, aiming at situations in which risks are not
fixed once and for all by the original design, but rather
managed over time, such as water levels in a dam.

[26] We use a hypothetical example, flooding of a dike,
to introduce the concepts. In the example, the distribution
of the highest water level at the dike during year t will be
assumed to follow a Generalized Extreme Value (GEV)
cdf,

Gt xð Þ ¼ e� 1þ�t
x��t
�t

ð Þ�1=�t

; for 1þ �t
x� �t

�t
� 0: ð3Þ

[27] (Note that for �t ¼ 0 this cdf reduces to the Gumbel
cdf.) Here, �t; �t > 0, and �t are the location, scale, and
shape parameters, respectively, for year number t after
2015, the beginning of the first design life period studied
below. Further, it is assumed that

�t ¼ 1þ 0:002t; �t ¼ 1þ 0:002t; �t ¼ 0:1; ð4Þ

so that the location and shape parameters grow by two
tenths of a percent per year, while the shape parameter is
constant. For example, the increase in the location parame-
ter could be due to a rise in the mean water level, and the
increase of the scale parameter could be caused by an
increase in climate variability.

[28] For later use, we note that the expected waiting time
until a level u is exceeded, denoted EWT(u), is conven-
iently obtained from equation (3) as

EWT uð Þ ¼
X1
t¼0

Pr waiting time > tf g

¼ 1þ
X1
t¼1

G1 uð Þ � � � � � Gt uð Þ: ð5Þ

[29] The new concepts now are as follows.
[30] Design Life Level: The T1 � T2 p% extreme level.

Here T1 denotes the time of the start of the design life pe-
riod, T2 is the end, and p is the probability that the level is
exceeded during the design life period. With a design life
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period of 2015–2064 and a risk of 5%, the estimated
Design Life Level can be expressed as follows:

[31] The 2015–2064 5% highest water level is 11.5 m.
[32] In nontechnical communication, this could be

phrased as ‘‘there is a 1 in 20 risk that that the biggest flood
during 2015–2064 will be higher than 11.5 m.’’ Techni-
cally, the 2015–2064 5% water level is the 95% quantile of
the probability distribution function of the maximal water
level during the period 2015–2064.

[33] Design Life Level captures risk in a way that is tai-
lored for risk assessment; for example, if the dike is built
to withstand a water level of 11.5 m, but not more, then the
statement above means that there is a 1 in 20 risk that the
dike will be flooded at least once during 2015–2064.

[34] Table 1 shows the Design Life Level for two differ-
ent design life periods and risk levels, together with corre-
sponding return levels for a stationary climate with the
same distribution as in the first year of the design life pe-
riod (i.e., for the return levels T¼ 975 and T¼ 4975,
respectively, which by equation (1) makes the probability
of an exceedance in a 50 year period equal to 0.05 and
0.01, respectively.) The table also exhibits the expected
waiting times until the first exceedance of the Design Life
Levels when the trend is given by equation (4) throughout,
and when the trend stops at the ends of the design life
periods.

[35] From the table it is seen that the return levels
obtained from assuming stationarity are too low and that
the expected waiting times are dramatically changed if one
changes assumptions about what happens after the design
life period. This illustrates that neither one of these con-
cepts is appropriate for this example. (The purpose of the
waiting time computations is just to show their sensitivity
to assumptions about behavior after the end of the design
life period, and not to make physically realistic
predictions.)

[36] A variant of Design Life Level is Minimax Design
Life Level: the T1 � T2 p% bounded yearly risk level. Here
T1 and T2 are defined as before, but for this concept, the
level is chosen such that the maximal probability of
exceedance in any one year in the design life period is at
most p%. Thus, in the example, ‘‘the 2015–2064 0.1%
bounded yearly risk water level 12.0 m’’ could nontechni-
cally be worded as ‘‘the risk that there will be a bigger
flood than 12.0 m is less than 1 in 1000 for each year in the
time period 2015–2064.’’ Technically, the value 12.0 m is
obtained by first determining the 0.999 quantile of the dis-
tribution of the largest rainfall in 2015, in 2016, . . . , and in
2064, and then taking the largest of these 50 quantiles.

[37] The Risk Plot fixes a level and shows how the risk
of exceeding this level varies for the different years in the
design life period. The Constant Risk Plot instead fixes a
probability, and for each year in the design life period dis-
plays the level that is exceeded with this probability. Sum-
marizing nonstationary risk in terms of changing quantiles
(termed ‘‘effective return levels’’ in Katz et al. [2002]) is
fairly common in the research literature on nonstationary
extremes. It informs managers how they should plan in
order to obtain the same risk for every year in the design
life period but, as already noted, is not feasible in many
problems in hydrologic engineering design. Figure 1 dis-
plays these plots for the present example. We have chosen
the risk level in the constant risk plot, such that it leads to
the same overall risk as the one used for Design Life Level.

5. Computation of Design Life Level and Other
Risk Measures: Examples

[38] Although the risk measures introduced in section 4
are general, we in this section use Extreme Value Statistics
for two examples. The first one is highest daily rainfall dur-
ing the winter half, May to October, of the year in Man-
jimup, Western Australia (Figure 2). This region has

Table 1. Results for Example (3)a

Design Life Prob.
Design Life

Level
Return Level
2015 Climate EWT

EWT Trend
Stopped

2015–2064 0.05 11.5 10.9 251 788
2015–2064 0.01 15.2 14.4 431 3839
2065–2114 0.05 12.6 10.9 262 1008
2065–2114 0.01 16.6 14.4 453 5002

aReturn levels are for T¼ 975 and T¼ 4975, respectively. EWT is
expected waiting time until an exceedance of the Design Life Level. In the
first EWT column, parameters are given by equation (4). In the second col-
umn, parameters are given by equation (4) up to the end of the design life
period and are kept constant after that.

Figure 1. (a) Probability that the largest flood is higher
than 11.5 m. (b) The risk that the highest flood in a year is
larger than the value shown for this year in plot is 0.1%.
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experienced an overall drying trend in recent decades
[Bates et al., 2010], and in particular a decrease in extreme
high daily precipitation amounts during the winter wet sea-
sons [Li et al., 2005]. The second example is warm winters
in Fort Collins, meaning winters in which the lowest daily
minimum temperature is relatively high (Figure 2). We
phrase the description of the methods in terms of the first
example. The computations for the second example were
done in the same way.

[39] The Design Life Levels, for example design life
periods and risk levels, are as follows: ‘‘the 2011–2060 5%
largest daily winter rainfall in Manjimup is 121 mm’’ and
‘‘the 2021–2100 10% highest minimum winter temperature
in Fort Collins is 24�F.’’ We also obtained that ‘‘the 2011–
2060 0.1% bounded yearly risk rainfall in Manjimup is 125
mm’’ and that ‘‘the 2021–2100 0.2% bounded yearly risk
highest minimum winter temperature in Fort Collins is
40�F.’’ Risk Plots and Constant Risk Plots are given in Fig-
ures 3 and 4. For Manjimup, the risk decreases roughly lin-
early, whereas for Fort Collins there is an abrupt rise in risk
toward the end of the design life period. So, at least for the
Fort Collins example, either ignoring the nonstationarity or
using one of the alternative frequency- or waiting-time–
based concepts of return level would be unrealistic for
design purposes. (For example, in 2021 the risk that

temperatures stay above 24�F the entire winter is negligi-
ble, whereas this risk is 2.1% in 2100. Thus, it clearly is
not possible to state a single number that simultaneously
captures yearly risk for each of the years in the period
2021–2100.)

[40] The aim of this section is to illustrate how the risk
measures can be computed, and also how this introduces
questions of uncertainty, to be discussed further in the next
section. The choice of trends would benefit from a thorough
examination of the physical process underlying and influ-
encing the changes in precipitation and temperature. Never-
theless, assuming a linear trend in the location parameter of
the GEV distribution seems natural and useful as a starting
point.

[41] Extreme Value Statistics has two main sets of meth-
ods, the Yearly (or ‘‘Block’’) Maxima method and the
Peaks over Thresholds method [e.g., Coles, 2001]. For sim-
plicity, the discussion below is in terms of Yearly Maxima.

[42] We throughout assume that extreme events in the
different blocks of time are independent of one another.
This in particular means that it sometimes can be suitable
to use blocks which are different from calendar years, say
for the Manjimup example to use winters instead of years,
to avoid cutting up winters into two different years. Since
min xi; . . . ; xkf g ¼ �max �xi; . . . ;�xkf g questions con-
cerning the distribution of minima are immediately trans-
formed to questions concerning the distribution of maxima
if one, instead of the original values, analyzes the negated
values. If desired, by negating once more, one can then at

Figure 2. The data. (a) Largest daily rainfall (mm) during
winter by year in Manjimup. Line is estimated location pa-
rameter (¼ 37% quantile) in fitted GEV distribution. (b)
Lowest daily minimum temperature (�F) by year in Fort
Collins. Line is estimated location parameter (¼ 63% quan-
tile) in fitted GEV distribution for minima.

Figure 3. Risk plots. (a) Probability that the largest daily
rainfall in Manjimup is greater than 121 mm. (b) Probabil-
ity that the yearly minimum temperature in Fort Collins is
warmer than 24�F.
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the end of the analysis return to the original values, and
present the results in terms of them. This was how we
handled the second example.

[43] The analysis can conveniently be made in four
steps: (1) obtain the distribution of Yearly Maxima, (2)
derive the distribution of the maximum over the design life
period, (3) compute Design Life Level and other risk meas-
ures, and (4) find estimates of the statistical uncertainty of
the risk measures.

[44] (1) Compute the distribution of Yearly Maxima.
Let Mt be a random variable which describes the probabil-
ity distribution of the largest (i.e., maximum) daily rainfall
in year t, so that we have at our disposal one observation,
m1930 of M1930, one observation, m1931 of M1931, and so on
until the last observation which is available to us, m2004.

[45] The nonstationary version of the Yearly Maxima
method consists of assuming that block maxima follow
the cdf (3). One then uses, for example, standard maxi-
mum likelihood techniques [Coles, 2001, Chapter 3] to
estimate the parameters in equation (3) from the data
m1930; . . . m2004, and to choose between different candidate
functional forms for the trends in the parameters.

[46] In the analysis of the Manjimup data, we tried out
models with a linear trend in all three parameters and in the
end, guided by plots and likelihood ratio tests, chose the

model in which � and � did not change with time but with a
linear trend �t ¼ aþ b t � 1929ð Þ in the location parame-
ter. For this model, we obtained the estimates and standard
errors â ¼ 42:462:2; b̂ ¼ �0:176� 0:05; �̂ ¼ 8:060:8,
and �̂ ¼ 0:1560:09 (for a more detailed analysis, see Katz
[2013]). These parameter values were then used in the
remaining steps of the analysis. We used the open source
R-program extRemes [Gilleland and Katz, 2011; R Devel-
opment Core Team, 2011] for the computations. For the
negated yearly minimum temperatures in Fort Collins, the
corresponding values were â ¼ 14:465:6; b̂ ¼ �0:216
0:06; �̂ ¼ 6:0560:68, and �̂ ¼ �0:1660:10 (note that the
negative trend, b < 0, for negated minima corresponds to a
warming trend in terms of minimum temperature).

[47] (2) Compute the distribution of the maximum over
the design life period. Let M2011�2060 denote the size of the
largest daily rainfall that occurs in the time period 2011–
2060. Using the results from the previous step, we can
compute estimates

Ĝt xð Þ ¼ e� 1þ�̂ t
x��̂ t
�̂ t

ð Þ�1=�̂ t

¼ e�
�

1þ�̂ x�ðâþb̂ðt�t0ÞÞ
�̂

��1=�̂

; for 1þ �̂ x� �̂t

�̂
� 0

ð6Þ

of the distribution of Mt, for each level x and year t ¼
2011; . . . ; 2060 of interest. Using the assumption that
the rainfall maxima in different years are independent,
the cdf F2011�2060 xð Þ of M2011�2060 is obtained as
F2011�2060 xð Þ ¼ Pr M2011�2060 � xf g ¼ G2011 xð Þ � G2012 xð Þ �
� � � � G2060 xð Þ:

[48] We thus immediately obtain an estimate of the cdf
F2011�2060 xð Þ of the size of the largest daily rainfall in the
period 2011–2060 as

F̂ 2011�2060 xð Þ ¼ Ĝ2011 xð Þ � Ĝ2012 xð Þ � � � � � Ĝ2060 xð Þ: ð7Þ

[49] (3) Compute the Design Life Level and other risk
measures. Let F�1 yð Þ denote the inverse of the cdf F(x)
(called the ‘‘quantile function’’). An estimate q̂2011�2060 yð Þ
of the quantile function q2011�2060 yð Þ ¼ F�1

2011�2060 yð Þ corre-
sponding to the cdf F2011�2060 xð Þ is then obtained by nu-
merical inversion of F̂ 2011�2060 xð Þ (perhaps easiest by just
computing F̂ 2011�2060 xð Þ on a grid of x-values). Now,
q̂2011�2060 0:95ð Þ is an estimate of the Design Life Level for
the risk p¼ 0.05.

[50] Similarly, the Minimax Design Life Level is easy to
compute from Ĝ2011 xð Þ; . . . ; Ĝ2060 xð Þ : just compute these
on a grid of x-values and choose the x-value that makes
their maximum equal to 0.999. The 2011–2060 Risk
Plot is a bar plot of 1-Ĝ2011 121ð Þ; . . . ; 1-Ĝ2060 121ð Þ,
1-Ĝ2011; . . . ; 1-Ĝ2060, and the 2011–2060 Constant Risk
Plot is a bar plot of Ĝ

�1

2011 0:999ð Þ; . . . ; Ĝ
�1

2060 0:999ð Þ. Since
the inverses are straightforward to compute, the Constant
Risk Plot is also easy to construct.

[51] (4) Estimate the statistical uncertainty. One stand-
ard method to estimate the statistical uncertainty is the
delta method. The method consists of using a Taylor series
expansion to find the standard deviation of Design Life
Level, a nonlinear function of the estimated parameters. A
more detailed description of the method is given in Appen-
dix A. As one example, for Manjimup, the delta method

Figure 4. Constant risk plots. (a) The probability that the
largest daily rainfall in a year in Manjimup is greater than
the value shown for this year in plot is 0.1%. (b) The proba-
bility that the minimum temperature in a year in Fort Col-
lins is higher than the value shown for this year in plot is
0.1%.
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estimate of the standard error of Design Life Level is 36
mm (recall that the estimated 2011–2060 5% Design Life
Level is 121 mm).

6. Statistical Uncertainty and Uncertainties of
Model Choice

[52] Risk measures have to be based on data: the data
could be past climate observations or output from climate
change experiments using numerical models of the climate
system. Statistical methods are then used to obtain esti-
mates of the risk measures from the data. This invariably
leads to a statistical parameter uncertainty in the estimates,
as seen in the previous section, for example.

[53] Further, even in a stationary climate, the choice of
statistical model can have substantial influence on the value
of a risk estimate: typically, a model is used to extrapolate
from the observed values to the more extreme values that
have not yet been experienced, but that pose real threats for
the future. Different models for this extrapolation can then
lead to different results. Still, it is by now fairly well under-
stood how to handle this uncertainty.

[54] However, a nonstationary climate involves a second
round of model choice, which entails further uncertainty:
typically statistical extrapolation into the future involves
choosing a functional form of one or several trends. But,
should one use a linear trend, or a quadratic one, or perhaps
something quite different? The different forms of the trends
might be almost indistinguishable for the observational pe-
riod, but lead to rather different future behavior.

[55] Finally, of course, if a climate model is used, it
involves a third set of choices of spatial resolution, of dif-
ferential equation models, of initial values, and of parame-
ter values, and many more model choices. A further
important, and uncertain, choice is to select a scenario for
the development of human activities which influence the
climate. This last consideration of course is important also
for the choice of the functional form of trends in statistical
extrapolation.

[56] Thus, in design, major efforts may have to be
directed at reducing these uncertainties. Possibilities
include (a) borrowing strength across space to estimate a
common or smoothly varying trend [see, e.g., Hanel et al.,
2009; Westra and Sisson, 2011], (b) combining observed
historical trends with projections from (perhaps an ensem-
ble of) climate models, and with historical experience of
other similar situations (e.g., via a Bayesian approach), and
(c) use of Peaks over Threshold instead of Yearly Maxima;
in stationary situations this often does not improve preci-
sion much, but there is some evidence that it may do so in
nonstationary situations.

[57] These last two sets of model uncertainties may in
some situations have a major influence. How should they
be handled? This is difficult to do quantitatively. Instead,
serious nonquantitative consideration of these is of basic
importance for good design practice. We have no general
rules for how this should be done, but still list some
possibilities :

[58] 1. Sensitivity studies: change some of the model
assumptions and see how this affects the risk estimates.

[59] 2. Take smaller risks with designs if there is a large
model uncertainty. (But then, how much smaller?)

[60] 3. Already in the design phase plan for later modifi-
cation to make the construction more resistant, if need
should arise.

[61] 4. Plan for regular adjustment of rules for managing
the construction.

[62] 5. Plan for regular updating of risk measures as ex-
perience and knowledge increases.

[63] The issue of uncertainty about the future has led to a
reluctance to abandon the stationarity assumption. In fact,
some have even argued that it would be better just to incor-
porate a ‘‘safety factor’’ into the estimates based on statio-
narity [Olsen, 2006]. Nevertheless, as climate change
trends are anticipated to accelerate in the future, a risk-
based approach would clearly be preferable for engineering
design [e.g., Zevenbergen et al., 2013].

7. Summary and Discussion

[64] Our main assertion is that, in a changing climate, to
quantify and communicate risks, one should specify both a
period of time, the design life period, and a probability of
failure. This probability should correspond to the desired
risk of an extreme event; say, a water level that will lead to
the flooding of a dike, or a rainfall that exceeds the capacity
of a sewer system over the design life period.

[65] We propose a concept, Design Life Level, which
does this. In it one simply specifies the design life period
and the probability of exceeding an extreme/hazardous
level during this period. A complementary variant, the
Minimax Design Life Level, instead specifies the maximal
risk of failure during any one year in the design life period.
In addition, Risk Plots, which show how the probability of
failure changes over the design life period, are often useful,
and sometimes also Constant Risk Plots, which for each
year in the design life period show the level that is
exceeded with a given specified probability. Nevertheless,
the probability of failure over the design life period, as
specified to determine the design life level, remains the
most informative single quantity for risk characterization
and communication.

[66] If one is not aiming primarily at design, but just
wants to illustrate the extent of changes, simpler concepts
may sometimes suffice. In particular, Laurent and Parey
[2007] use a nonstationary version of the 100-year return
level, and Vogel et al. [2011] introduce a ‘‘flood magnifica-
tion factor,’’ which quantifies how the distribution of
extreme events shifts from decade to decade. This is dis-
cussed in section 3.

[67] An always important aspect of risk measurement is
quantification and handling of uncertainties in the risk
measurements. This is discussed in sections 5 and 6. One
(obvious) conclusion is that in a changing climate, it, al-
ready at the design stage, is important to plan for later mod-
ifications of constructions and for recurring reevaluation of
risks.

[68] To facilitate use of the new concepts, in section 5
we exhibit how one can use Extreme Value Statistics to cal-
culate the risk measures. However, it should be emphasized
that the concepts in no way are tied to extreme value meth-
ods, and that there are many other ways to compute them.
The examples assume independence between years, but
again, the concepts are equally useful for dependent
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extremes. How to make direct use of climate model output
remains an open question, especially concerning extremes.
In particular, realistic projections of extremes are not yet
available at the required spatial and temporal scales. But,
with the continuous increase in resolution and realism of
general circulation models and with advances in downscal-
ing technology, we expect that many such examples soon
will appear.

[69] We recognize that the adoption of the proposed con-
cept of Design Life Level would require a shift from more
common standard-based to less common risk-based engi-
neering design. But such a shift would be desirable even
under a stationary climate [e.g., Kunreuther et al., 2013].
At present, the design of water resource structures does
sometimes take into consideration future conditions (e.g.,
projections of increased demand), but not typically any pro-
jected changes in climate. Determining the optimal level of
the probability of failure may not be straightforward; in
particular, requiring an integration of expected costs and
benefits over the design life period. Further, engineering
design is constrained by political and legal systems that
might well hinder adoption of the proposed solution.
Nevertheless, the probability of failure is one important
input into the very complex processes that are used in the
design of water resources structures.

[70] Finally, this paper does not provide the complete
and final solution to the problem of risk quantification in a
changing climate. Instead, we hope that it will be one start-
ing point for a long overdue discussion.

Appendix A

[71] We here describe how the delta method can be used
to estimate the statistical uncertainty in Design Life Level.
For this, we change to more general notation and write
F̂ xð Þ instead of F̂ 2011�2060 xð Þ ; and q̂ yð Þ instead of
q̂2011�2060 yð Þ ; and Ĝ1 xð Þ instead of Ĝ2011 xð Þ; Ĝ2 xð Þ instead
of Ĝ2012 xð Þ, and so on; and also write N instead of 50.

Thus, with this notation, F̂ xð Þ ¼
YN

i¼1
Ĝi xð Þ and

q̂ yð Þ ¼ F̂
�1

yð Þ. We further assume that the estimates Ĝi xð Þ
are computed from a vector of d parameter estimates �̂ ¼
ð�̂1 ; . . . �̂dÞ (thus in the Manjimup example d¼ 4 and

�̂ ¼ ðâ; b̂; �̂; �̂Þ) so that Ĝi xð Þ ¼ Giðx; �̂Þ ; that the �-
estimates are (approximately) normally distributed; and

that we have an estimate
P̂
¼ �̂i;j; 1 � i; j � d
� �

of the co-

variance matrix of �̂ at our disposal (for our examples
P̂

was one of the outputs of extRemes).
[72] With this notation, the delta method [see, e.g.,

Coles, 2001, p. 33] consists of estimating the variance
�2 yð Þ of q̂ yð Þ by

�̂2 yð Þ ¼ @

@�i
q y; �ð Þj�¼�̂ ; 1 � i � d

� �X̂

@

@�i
q y; �ð Þj�¼�̂ ; 1 � i � d

� �
t

:

ð8Þ

[73] It is straightforward to compute the derivatives in
the expression above numerically using a computer algebra
program. For this paper, we used Maple, to first compute

F̂ xð Þ and then q̂ yð Þ by numerical inversion, by just plotting
F̂ xð Þ for a grid of x-values. Derivatives were then com-
puted numerically by making small perturbations of the pa-
rameter values, one at a time, and computing approximate
derivatives from the corresponding changes of q̂ yð Þ.
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