A WAVELET APPROACH TO THE VERIFICATION OF PROBABILISTIC SPATIAL FIELDS

mweniger@uni-bonn.de Michael Weniger, Petra Friederichs

Aim

Evaluate probabilistic spatial fields (e.g. ensemble output) with non-negligible observational uncertainties.

Outline for a WPT Verification Method

- 1. Uni-variate intensity analysis \Rightarrow uni-variate normalization of spatial fields
- 2. Large-scale location errors \rightarrow open question
- 3. Small-scale structure / texture analysis with WPT

(1) Uni-Variate Intensity Analysis

Crucial Aspects

- **Robustness**: verification scores have to be robust w.r.t. observational uncertainties
- Multivariate Probability Distributions: in a probabilistic environment we do not perceive two spatial fields as fixed images, but rather as realizations of underlying multivariate probability distributions.
- Curse of Dimensions: even relatively small spatial fields lead to very high dimensional mathematical objects (e.g. covariance matrix).

Wavelet Approach

• Wavelets allow very efficient data reduction (e.g. JPEG image compression).

- Forecast has an asymmetric bias (positive values are overestimated) by a factor of 3)
- Uni-variate analysis separates intensity errors from scale-errors, i.e. ignores *texture*.
- CDFs can be analyzed using well-known one-dimensional statistical methods (e.g. Integrated Quadratic Distance, Earth-Movers Distance, Rank Histograms, etc.).

(3) Structure / Texture Analysis

Retina Scans [1]

- Structure of iris is decomposed with 2D-Gabor wavelets
- Matching-algorithm information uses

- There are reliable wavelet-based methods to handle data with significant amounts of noise. This is based on finding a "good" wavelet transform, i.e. wavelet basis functions, which emphasize the most important characteristics of a given set of data.
 - \Rightarrow best-basis-algorithms
- Wavelet Package Transforms (WPT) extend these ideas to spatial fields. There are fast algorithms to find optimal wavelettransformations based on minimizing user-defined cost functions (e.g. entropy of the energy-distribution of wavelet-coefficients).
 - \Rightarrow The combination of efficient best-basis-algorithms with high data reduction allows to overcome the *curse of dimensions*.

Two-Dimensional Wavelet Package Transform

Window-Scheme

measures on wavelet coefficients.

Texture-Analysis on Normalized Fields

Open Questions

• Exact mathematical definition of metrics for

Example: Two-Dimensional D4-Wavelet Transform

Original Image

- ▷ uni-variate intensity analysis
- ▷ index-vectors of best-wavelet-bases
- ▷ energy distributions of wavelet coefficients
- Definition / method to describe displacement errors, e.g.
 - ▷ Image Warping
 - \triangleright de-noised center of mass evaluation

References

[1] John Daugman. New methods in iris recognition. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(5):1167–1175, 2007.