Image Warping for Forecast Verification

Eric Gilleland

Research Applications Laboratory, National Center for Atmospheric Research

Johan Lindström and Finn Lindgren

Mathematical Statistics, Centre for Mathematical Sciences, Lund University, Lund, Sweden.

STINT (The Swedish Foundation for International Cooperation in Research and Higher Education) Grant IG2005-2007 provided travel funds that made this research possible.

Motivation

Transform (deform) the forecast field, F, to look as much like the observed field, O, as possible.

Information about forecast performance given by:

- Traditional score(s), $\boldsymbol{\theta}$, of un-deformed field, F, against O.
- Percent reduction in $\boldsymbol{\theta}$ after Affine deformations (η_1) .
- Percent reduction in $\boldsymbol{\theta}_{affine}$ after Nonlinear deformations (η_2) .
- Amount of movement necessary to improve $\boldsymbol{\theta}$ by η_1 .
- Amount of bending energy required to further improve $\boldsymbol{\theta}_{affine}$ by η_2 .

$$\tilde{F}(\boldsymbol{s}) = F(W(\boldsymbol{s})), \, \boldsymbol{s} \in \mathcal{D}$$

where \mathcal{D} is the support of the image (i.e., the grid).

$$W(\boldsymbol{s}) = W_{\rm NL}(W_{\rm affine}(\boldsymbol{s}))$$

maps coordinates from the undeformed image, F, to the deformed image, $\tilde{F}.$

Many choices for W. A few popular choices.

- polynomials (e.g., Alexander et al., 1999; Dickinson and Brown, 1996)
- thin-plate splines (e.g., Sampson and Guttorp, 1992; Glasbey and Mardia, 2001; Åberg et al., 2005).
- B-splines (e.g., Lindström, Gilleland and Lindgren (In Prep))
- Other (e.g. Keil and Craig, 2007)

For computational concerns, use control points, \boldsymbol{p}^{F} and \boldsymbol{p}^{O} , to determine the warp.

Introduce *log*-likelihood to measure dissimilarity between \tilde{F} and O. This is different from measuring via a forecast verification score!

$$\log p(O|F, \boldsymbol{p}^F, \boldsymbol{p}^O) = h(\tilde{F}, O)$$
(1)

where choice of error likelihood h depends on the forecast variable.

Must penalize non-physical warps!

Introduce a smoothness prior for the warps Behavior determined by the control points. Assume these points are fixed and apriori *known*, in order to reduce the prior on the warping function to $p(\mathbf{p}^F | \mathbf{p}^O)$.

$$p(\boldsymbol{p}^{F}|O, F, \boldsymbol{p}^{O}) = \log p(O|F, \boldsymbol{p}^{F}, \boldsymbol{p}^{O}) p(\boldsymbol{p}^{F}|\boldsymbol{p}^{O})$$
(2)

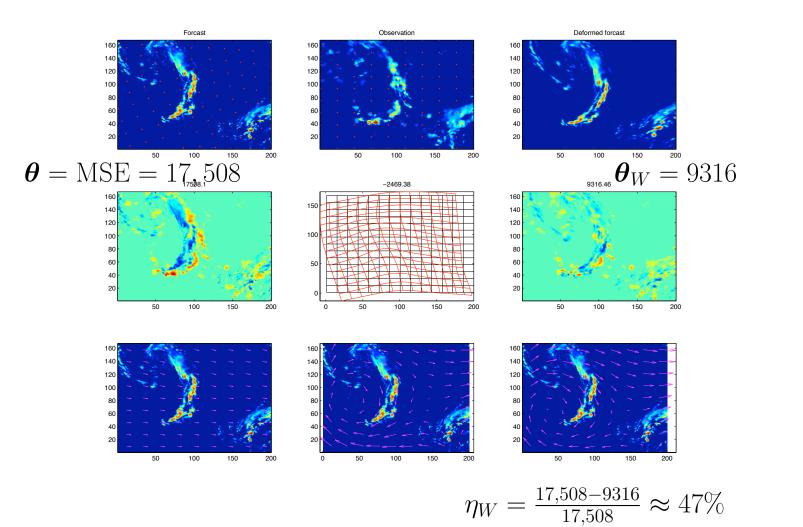
where it is assumed that \boldsymbol{p}^{F} are conditionally independent of F given \boldsymbol{p}^{O} .

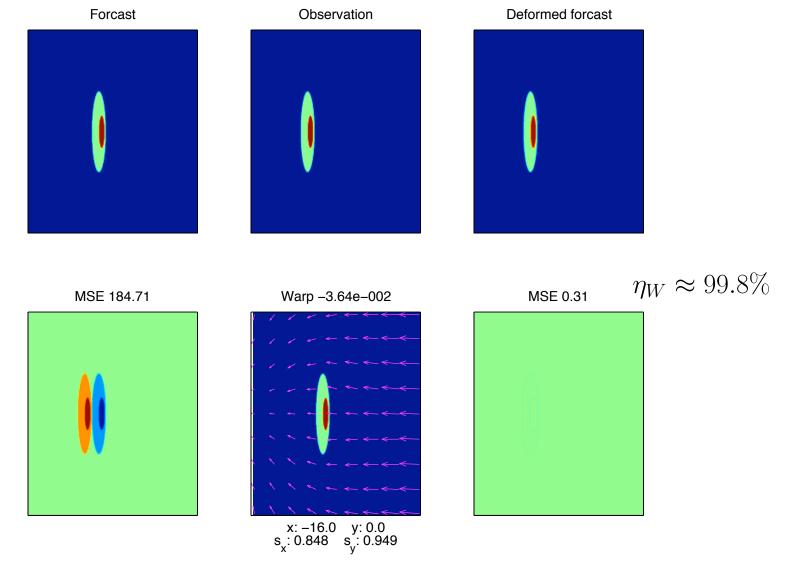
Estimation

To find the optimal deformation (based on \boldsymbol{p}^F and \boldsymbol{p}^O), maximize the likelihood given by (2). From (1) and (2), we get

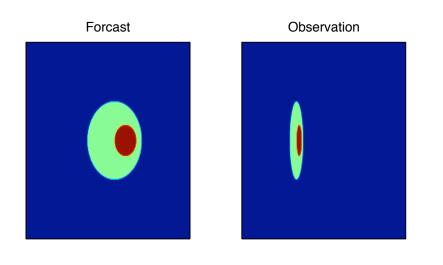
$$\begin{split} \ell(\boldsymbol{p}^{F}|O, F, \boldsymbol{p}^{O}) &= \log \operatorname{p}(O|F, \boldsymbol{p}^{F}, \boldsymbol{p}^{O}) + \log \operatorname{p}(\boldsymbol{p}^{F}|\boldsymbol{p}^{O}) \\ &= h(\tilde{F}, O) + \log \operatorname{p}(\boldsymbol{p}^{F}|\boldsymbol{p}^{O}). \end{split}$$

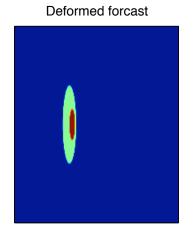
Test Cases

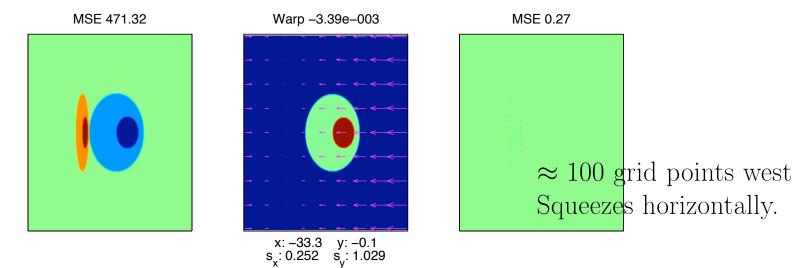




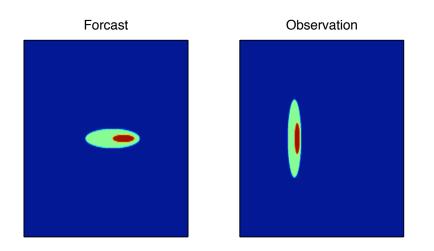
Gemoetric 1; 50 pts too far to the east $3 \cdot (-16.0) = -48 \equiv$ Moves forecast 48 grid points to the west; negligible re-scaling and nonlinear movement.

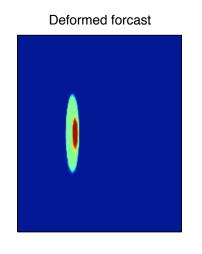


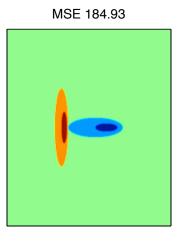


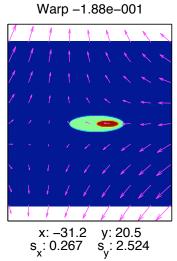


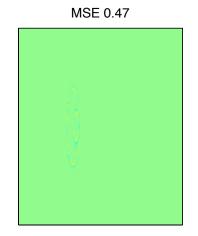
Geometric 3; 125 grid points too far east and larger spatial coverage



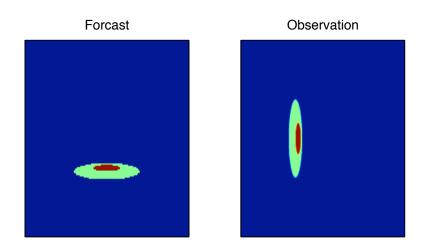


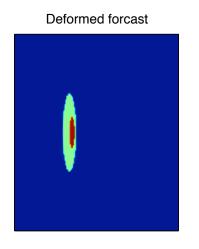




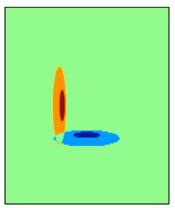


Geometric 4; 125 pts too far east and incorrect orientation



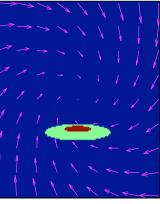


RMS 176.75

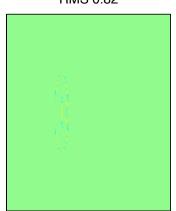


True Rotation

Warp -4.35e-002



x: -10.1 y: 0.9 s_x: 1.116 s_y: 0.781



RMS 0.82

Discussion, Ongoing and Future Work

- Rotations vs. Re-scaling is tricky!
- Control points (fewer mean faster computation, but less intricate warps).
- Statistical model will allow for confidence intervals.
- Works well on binary images as well as real cases.
- Potentially can be used on most any field (e.g., wind vector fields, temperature, etc.)
- Extendable to multiple dimensions (time, vertical, etc.)
- Gives information about types of error.
- thin-plate splines move pixels globally, better to use B-splines?

References

- Åberg, S., Lindgren, F., Malmberg, A., Holst, J., Holst, U., 2005. An image warping approach to spatio-temporal modelling. Environmetrics 16 (8), 833–848.
- Alexander, G., Weinman, J., Karyampudi, V., Olson, W., A.C.L., L., 1999. The effect of assimilating rain rates derived from satellites and lightning on forecasts on the 1993 superstorm. Mon. Wea. Rev. 127, 1433–1457.
- Dickinson, S., Brown, R., 1996. A study of near-surface winds in marine cyclones using multiple satellite sensors. J. Appl. Meteorol. 35, 769–781.
- Glasbey, C., Mardia, K., 2001. A penalized likelihood approach to image warping. Journal of the Royal Statistical Society. Series B (Methodology) 63 (3), 465–514.
- Keil, C., Craig, G., 2007. A displacement-based error measure applied in a regional ensemble forecasting system. Mon. Wea. Rev. 135, 3248–3259.
- Sampson, P. D., Guttorp, P., 1992. Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association 87 (417), 108–119.