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Methodology

Motivation

Transform (deform) the forecast field, F , to look as much like the
observed field, O, as possible.

Information about forecast performance given by:

• Traditional score(s), θ, of un-deformed field, F , against O.
• Percent reduction in θ after Affine deformations (η1).
• Percent reduction in θaffine after Nonlinear deformations (η2).
• Amount of movement necessary to improve θ by η1.
• Amount of bending energy required to further improve θaffine

by η2.
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Methodology

F̃ (s) = F (W (s)), s ∈ D
where D is the support of the image (i.e., the grid).

W (s) = WNL(Waffine(s))

maps coordinates from the undeformed image, F , to the deformed
image, F̃ .
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Methodology

Many choices for W . A few popular choices.

• polynomials (e.g., Alexander et al., 1999; Dickinson and Brown,
1996)

• thin-plate splines (e.g., Sampson and Guttorp, 1992; Glasbey and
Mardia, 2001; Åberg et al., 2005).

• B-splines (e.g., Lindström, Gilleland and Lindgren (In Prep))

• Other (e.g. Keil and Craig, 2007)

4



Motivation

For computational concerns, use control points, pF and pO,
to determine the warp.

Introduce log-likelihood to measure dissimilarity between F̃ and O.
This is different from measuring via a forecast verification score!

log p(O|F, pF , pO) = h(F̃ , O) (1)
where choice of error likelihood h depends on the forecast variable.

5



Methodology

Must penalize non-physical warps!
Introduce a smoothness prior for the warps
Behavior determined by the control points. Assume these points are
fixed and apriori known, in order to reduce the prior on the warping
function to p(pF |pO).

p(pF |O,F, pO) = log p(O|F, pF , pO)p(pF |pO) (2)

where it is assumed that pF are
conditionally independent of F given pO.
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Methodology

Estimation
To find the optimal deformation (based on pF and pO), maximize the
likelihood given by (2). From (1) and (2), we get

`(pF |O, F, pO) = log p(O|F, pF , pO) + log p(pF |pO)

= h(F̃ , O) + log p(pF |pO).
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Test Cases

Observation
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θ = MSE = 17, 508 θW = 9316

ηW = 17,508−9316
17,508 ≈ 47%
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ObservationForcast Deformed forcast

MSE 184.71 MSE 0.31Warp !3.64e!002

x: !16.0    y: 0.0
sx: 0.848    sy: 0.949

Gemoetric 1; 50 pts too far to the east
3 · (−16.0) = −48 ≡ Moves forecast 48 grid points to the west;
negligible re-scaling and nonlinear movement.

ηW ≈ 99.8%
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!bservationForcast Deformed forcast

MSE 671.32 MSE 0.27Warp !3.39e!003

x: !33.3    y: !0.1
sx: 0.252    sy: 1.029

Geometric 3; 125 grid points too far east and larger spatial coverage

≈ 100 grid points west
Squeezes horizontally.
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ObservationForcast Deformed forcast

MSE 184.93 MSE 0.47Warp !1.88e!001

x: !31.2    y: 20.5
sx: 0.267    sy: 2.524

Geometric 4; 125 pts too far east and incorrect orientation
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ObservationForcast Deformed forcast

RMS 176.75 RMS 0.82Warp !4.35e!002

x: !10.1    y: 0.9
sx: 1.116    sy: 0.781

True Rotation
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Discussion, Ongoing and Future Work

• Rotations vs. Re-scaling is tricky!

• Control points (fewer mean faster computation,
but less intricate warps).

• Statistical model will allow for confidence intervals.

• Works well on binary images as well as real cases.

• Potentially can be used on most any field (e.g., wind vector fields,
temperature, etc.)

• Extendable to multiple dimensions (time, vertical, etc.)

• Gives information about types of error.

• thin-plate splines move pixels globally, better to use B-splines?
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